Компьютерное моделирование в военном деле. Имитационная система моделирования боевых действий JWARS ВС США. Военная теория и практика

ВОЕННАЯ МЫСЛЬ № 7/2009, стр. 12-20

Моделирование вооруженного противоборства: перспективы развития

Полковник В.И. ВЫПАСНЯК ,

кандидат военных наук

Полковник Д.Б. КАЛИНОВСКИЙ

Полковник О. В. ТИХАНЫЧЕВ ,

кандидат технических наук

В НАСТОЯЩЕЕ время существенно возрастают роль и значение военно-научного обоснования решений органов государственного и военного управления в области строительства, подготовки, планирования применения и управления Вооруженными Силами в ходе решения стоящих перед ними задач по обеспечению военной безопасности государства. При этом, как показывает опыт локальных войн и вооруженных конфликтов, важнейшими условиями успешного достижения целей современных операций являются своевременное отслеживание и отображение в режиме времени, близком к реальному, обстановки в зонах конфликтов, прогнозирование ее развития, проработка различных вариантов действий войск сторон, в том числе с использованием методов математического моделирования.

Актуальность проблемы применения методов математического моделирования в военном деле подтверждается большим количеством публикаций на эту тему в различных периодических изданиях. Их анализ показывает, что мнения авторов различаются в диапазоне от полного неприятия математических моделей в военном деле до вполне объективного понимания этого вопроса, хотя и с определенными оговорками.

Причины такого разброса мнений различны. Кто-то считает, что для информационной поддержки планирования операции вполне достаточно расчетных задач и математического аппарата сравнения боевых потенциалов, другие настаивают на применении упрощенных моделей, уповая на способности командира «выстраивать мысленную модель предстоящего боя и операции», или просто не делают различий между моделями и расчетными задачами, достаточно вольно трактуя их определения.

Хотя почти все авторы говорят о необходимости прогнозирования в работе командиров (командующих) и штабов, очень часто звучит мнение, подтверждаемое, на первый взгляд, обоснованными примерами и рассуждениями, что использование методов математического моделирования нецелесообразно, а иногда и опасно, поскольку ведет к искажению оценки результатов планирования. Причин данного заблуждения, на наш взгляд, несколько. Это, во-первых, непонимание сущности математического моделирования, назначения используемых моделей, их возможностей, принимаемых при разработке допущений и границ применения. Во-вторых, выдвижение одинаковых оперативных и технических требований к моделям и задачам различного назначения, применяемым для разных уровней управления. И, наконец, в-третьих, необоснованная «абсолютизация» результатов моделирования.

Все это является следствием различного понимания военными теоретиками и должностными лицами органов военного управления проблемы моделирования вооруженного противоборства. Чтобы обоснованно обсуждать данную проблему, необходимо прежде всего определиться с основными ее составляющими: терминологией математического моделирования; классификацией математических моделей и методов прогнозирования; методикой и границами применения математических моделей; технологиями реализации математических моделей различного назначения.

В первую очередь следует уяснить, что считать математической моделью (ММ), а что информационно-расчетной задачей (ИРЗ), а также, чем отличается математическое моделирование от проведения оперативно-тактических расчетов (ОТР). В справочной литературе существует достаточно большое количество определений рассматриваемых понятий.

Так, в «Военной Энциклопедии» математическая модель трактуется как описание какого-либо явления (объекта) с помощью математической символики. В «Военном энциклопедическом словаре» математическое моделирование в военном деле сформулировано как метод военно-теоретического или военно-технического исследования объекта (явления, системы, процесса) путем создания и изучения его аналога (модели) с целью получения информации о реальной системе.

Оперативно-тактические расчеты в этом же словаре изложены как вычисления, проводимые личным составом управлений, объединений, соединений, частей и подразделений, цель которых определить количественные, качественные, временные и другие показатели для принятия решений на операцию (бой) или обоснования планирования применения войск и обеспечения управления.

Одна из самых популярных электронных интернет-энциклопедий «Википедия» дает свои формулировки понятий, относящихся к математическому моделированию. Так, задача в самой общей «канонической» форме - логическое высказывание типа: «даны заданные условия, требуется обеспечить достижение некоторой цели», а модель - логическое или математическое описание компонентов и функций, отображающих существенные свойства моделируемого объекта или процесса.

На основании приведенных в этом же источнике определений можно четко увидеть существенное различие между отдельной математической моделью, комплексом и системой моделей. Комплекс моделей - совокупность моделей, предназначенных для решения одной сложной задачи, каждая из которых описывает ту или иную сторону моделируемого объекта или процесса. Если же модели связаны так, что результаты одних оказываются исходными данными для других до получения общего результата, то комплекс обращается в систему моделей. Система моделей - совокупность взаимно связанных математических моделей для описания сложных систем, которые невозможно воспроизвести в одной модели. Для планирования и прогнозирования поведения крупных объектов разрабатываются системы моделей, построенные обычно по иерархическому принципу, в несколько уровней. Они называются многоуровневыми системами.

И, наконец, в действующем ГОСТе серии «РВ» приведены следующие определения математической модели и расчетной задачи. Математическая модель операции (боевых действий) - система математических зависимостей и логических правил, позволяющая с достаточной полнотой и точностью воспроизводить во времени наиболее существенные составляющие моделируемых боевых действий и рассчитывать на основе этого численные значения показателей прогнозируемого хода и исхода боевых действий.

Расчетная задача - совокупность математических зависимостей, алгоритмов и данных для выполнения оперативно-стратегических (оперативно-тактических) или специальных расчетов, позволяющая оценить обстановку, которая сложится в результате предполагаемых действий или рассчитать параметры управления, обеспечивающие достижение требуемого результата с вероятностью не ниже заданной.

Анализ данных определений показывает различие между ММ и ИРЗ, заключающееся в том, что первые предназначены для прогноза развития ситуации при разных вариантах исходных данных, а вторые - преимущественно для проведения прямых расчетов в интересах получения конкретного результата. Раньше ИРЗ решались в основном вручную, а ММ - на «больших» ЭВМ. С развитием средств автоматизации многие задачи были переложены в виде программ на ЭВМ, что позволило усложнить применяемый математический аппарат, количество учитываемых факторов, и привело к некоторому «стиранию» грани между ММ и ИРЗ. Это, на наш взгляд, одна из причин недоразумений по отношению к применению математического моделирования в ходе проведения оперативно-тактических расчетов.

В соответствии с руководящими документами основными функциями штабов является сбор информации и ее оценка, планирование операции (боя) и прогнозирование изменений обстановки. С планированием все достаточно ясно: оно подразумевает преимущественно решение прямых и обратных ИРЗ. А вот для оценки обстановки, прогнозирования ее изменений, а также для сравнительной оценки спланированных вариантов применения войск (сил) требуется применение разнообразных математических методов прогнозирования (рис.).

Классификация методов прогнозирования

Каждый из данных методов апробирован в различных областях управленческой деятельности и доказал свое право на существование. Но не все из них могут быть использованы в практической деятельности командиров (командующих) и штабов при организации военных действий. Это обусловлено особенностями ведения вооруженной борьбы, заключающимися в существенной неопределенности исходных данных, необходимости учитывать огромное количество факторов и высокой «стоимости» ошибочных решений. Исходя из этого методы экстраполяции тенденций и некоторые виды моделей практически никогда не используются при организации военных действий. Иное дело - экспертные методы и математическое моделирование, но и на их применение оказывают существенное влияние вышеперечисленные особенности.

Формально любой из отображенных на рисунке подходов к прогнозированию можно отнести к моделированию процессов и определению тенденций: логическому, мысленному, математическому. Но исходя из специфики моделирования вооруженного противоборства, определения ММ, применяемого в ГОСтах серии «РВ», целесообразно, говоря о моделировании, рассматривать именно математические модели, описывающие процессы вооруженного противоборства, его составных частей и отдельных форм. Далее речь пойдет преимущественно о таких моделях.

Классификация математических моделей влияет на требования к ним, на формирование перечней ММ и ИРЗ, обеспечивающих поддержку принятия решений должностных лиц органов военного управления. По своему назначению ММ принято разделять на исследовательские и штабные (табл. 1).

Таблица 1

Классификация математических моделей

Исследовательские модели предназначены как для обеспечения проведения исследований, связанных с развитием вооружения, разработкой новых способов ведения операций и боевых действий, так и для анализа результатов расчетов при заблаговременном планировании. Основное требование к ним - обеспечение необходимой точности математического описания исследуемых процессов. Менее жесткие требования предъявляются к оперативности моделирования.

Штабные модели - это математические модели операций (боевых действий), предназначенные для обеспечения практической деятельности штабов. К ним предъявляются два основных требования: первое - возможность применения в реальном режиме времени, вписывающемся в алгоритм работы штаба; второе - обеспечение существенного повышения объективности и обоснованности решений, принимаемых по управлению войсками.

По форме описания процесса вооруженного противоборства ММ подразделяются на аналитические и стохастические. И те, и другие могут быть как штабными, так и исследовательскими.

По получаемому результату моделирования модели наиболее значимо разделяются на прямые (описывающие) и прескриптивные (оптимизирующие или предписывающие). Первые позволяют ответить на вопрос: «что будет если...», вторые: «как сделать, чтобы получилось так». Наиболее часто в военном деле применяются описывающие модели. Применению прескриптивных моделей, более перспективных с точки зрения поддержки принятия решений, препятствует ряд объективных и субъективных факторов.

Объективным является то, что при большом количестве учитываемых факторов очень сложно сформулировать формальную задачу поиска оптимального решения. Не менее сложно интерпретировать полученные результаты. Субъективные факторы: нежелание должностных лиц доверять поиск решения программе, принципы работы которой им неизвестны. Встречается также мнение, что алгоритм работы прескриптивной модели можно вычислить, и, зная его, просчитать результат решения. Это мнение, несомненно, ошибочно, так как даже при известном алгоритме работы модели невозможно вычислить результат моделирования, не имея точных сведений о вводимых в модель исходных данных.

Трудно судить, насколько существенны эти факторы для разработки ММ, но факт налицо: в настоящее время для прогнозирования в военной области применяются описывающие модели. Вероятно, эта тенденция сохранится и в ближайшей перспективе.

В некоторых источниках, рассмотренных в начале статьи, высказывается мнение, что моделирование (а иногда и прогнозирование) можно заменить проведением прямых расчетов, достаточно с той или иной степенью приближения описать процесс системой уравнений. Однако в таком подходе кроется незаметный, но опасный подвох. Во-первых, некоторые процессы описать в явном виде просто невозможно. Во-вторых, описание поведения системы уравнениями в явном виде требует введения значительного количества поправочных и обобщающих коэффициентов, большинство из которых получается эмпирическим путем при обобщении статистики известных событий. Делается это в строго заданных условиях, о которых потенциальный пользователь расчетной системы в момент принятия решения знать не будет. Любое изменение в формах, методах, средствах вооруженной борьбы снижает точность системы уравнений, искажает решение задачи. Поэтому расчетные методики никогда не заменят модель, оперирующую вероятностными подходами.

Границы применения математического моделирования, перечень применяемых ММ в рамках выше приведенной классификации определяется задачами прогнозирования и оценки, решаемыми в использующих их органах военного управления, а также возможностями по предоставлению входной и потребностями в выходной информации моделей. Из анализа требований основных руководящих документов, опыта мероприятий оперативной подготовки можно определить потребности органов военного управления в применении математических моделей и представить их иерархическую структуру (табл. 2).

Предложенная классификация не является догмой, а лишь отражает потребности органов военного управления в средствах расчетно-информационной (в перспективе и интеллектуальной) поддержки и обоснования принимаемых решений. Реализация предложенных моделей по уровням управления, их многозвенная взаимоувязка по существу и является перспективой развития математического моделирования.

Несмотря на объективную необходимость использования математических моделей при организации военных действий, на их применение существенное влияние оказывают субъективные факторы, связанные с отношением должностных лиц к результатам моделирования. Следует четко понимать, что модель не средство непосредственной выработки решений на применение войск (сил) или обоснования путей развития системы вооружений, а лишь инструмент, обеспечивающий осуществление одного из этапов этого процесса - проведение сравнительной оценки качества принимаемых решений. Этот инструмент разрабатывается под определенные задачи и условия с некоторыми допущениями и имеет соответствующую область применения. Причем не всегда возможно и необходимо разрабатывать некую универсальную модель, часто целесообразнее иметь набор инструментов, применяемых для решения конкретных задач на определенных рабочих местах (уровнях управления), приспособленных к конкретным условиям работы. Только такое понимание позволит сформировать правильный подход к применению модельных технологий в органах военного управления и вывести организацию военных действий (операций, боевых действий) ВС РФ на качественно новый, соответствующий требованиям ведения современной войны уровень.

В этой связи, а также с точки зрения технологической реализации модельных технологий, наиболее целесообразной представляется классификация математических моделей относительно их включения в состав специального математического и программного обеспечения (СМПО) автоматизированных систем управления войсками (АСУВ). При таком подходе модели могут быть реализованы, во-первых, непосредственно в составе СМПО комплексов средств автоматизации (КСА) АСУВ; во-вторых - в виде отдельных программно-технических комплексов (ПТК), обеспечивающих решение конкретных задач; в-третьих - в составе стационарных или мобильных многофункциональных моделирующих центров (компьютерных центров моделирования военных действий - КЦ МВД).

Опыт разработки и эксплуатации АСУВ показывает, что в ряде случаев существует объективная необходимость включения математических моделей в состав СМПО АСУВ, например, для обеспечения сравнительного анализа вариантов применения войск при выработке замысла операции, оценки эффективности вариантов построения массированного огневого удара и др. Математические модели, функционирующие в составе специального программного обеспечения (СПО) АСУВ должны обеспечивать автоматизированный обмен информацией с базой данных системы, другими моделями и задачами, получая большую часть информации от них в автоматизированном режиме. Эти модели должны иметь предельно простой пользовательский интерфейс, обеспечивающий достаточный набор формализованных управляющих воздействий по порядку применения войск (сил) и боевых систем, а также функций по наглядному представлению результатов моделирования.

Таблица 2

Иерархическая структура математических моделей вооруженного

противоборства

Речь идет в первую очередь о штабных моделях, иногда еще называемых в специальной литературе «экспресс-моделями», хотя определение «экспресс» звучит несколько уничижительно, отражая лишь внешние потребительские качества модели - простоту управления и быстроту получения результата. В то же время штабные модели являются достаточно сложным продуктом: они адекватно описывают процесс, для моделирования которого они разрабатывались. Внешняя простота достигается длительной работой над оптимизацией вычислительных алгоритмов и пользовательских интерфейсов. Зато именно такие модели могут широко использоваться офицерами, не имеющими специальной компьютерной подготовки.

Справедливости ради следует отметить, что творческая и «штучная» работа по созданию интерфейсов программ и выработке подходов по их унификации, выполнить которую может только специалист с широким оперативным и техническим кругозором, не относится к научной деятельности. При этом отсутствие унифицированных подходов к интерфейсной реализации математических моделей и информационно-расчетных задач в работе должностных лиц существенно снижает их пользовательские свойства, затрудняет освоение должностными лицами и внедрение в деятельность органов военного управления.

Более разнообразные по функционалу, хотя и более сложные в эксплуатации модели иногда целесообразно не включать в состав СМПО АСУ В, а использовать в составе многофункциональных компьютерных моделирующих центров или отдельных специализированных ПТК. Это обусловлено следующими факторами:

сложные модели, комплексы и системы моделей могут формировать требования к вычислительной технике, не всегда обеспечиваемые средствами серийных АСУВ;

дороговизна разработки и необходимость обслуживания сложных математических моделей иногда делает нецелесообразным поставки их в органы военного управления для использования всего несколько раз в году, а иногда и реже, целесообразнее использовать одну модель в режиме перемещения в составе мобильных ПТК с собственным персоналом;

более сложные и разнообразные в управлении модели требуют для обслуживания более подготовленных специалистов, которые не всегда есть в автоматизируемых органах военного управления;

требования к составу и детализации исходных данных сложных моделей (комплексов и систем моделей) не всегда позволяют организовать их автоматизированное взаимодействие с базой данных АСУВ;

разнообразие выходной информации требует ее комплексной оценки, часто на грани науки и искусства, что может быть обеспечено только опытным специалистом в области моделирования. Более того, только специалист в области моделирования может детально знать допущения и ограничения, принятые при разработке модели, область ее применения и оценить степень влияния этих факторов на результаты моделирования. В деле оперативного (боевого) планирования, учитывая высокую цену ошибки, это немаловажное обстоятельство.

Эти факторы в совокупности с необходимостью обеспечения решения задач оперативного планирования и формирования программы вооружений обусловливают необходимость создания специализированных компьютерных центров (отдельных ПТК) моделирование военных действий (КЦ МВД) вне рамок АСУВ. Такие компьютерные центры моделирования могут быть стационарными или подвижными, оснащаться компьютерами в различной комплектации, но при этом должны обязательно соблюдаться условия возможности обмена информацией между КЦ МВД и АСУВ и обеспечения требований сохранности исходной информации АСУВ.

Стационарные моделирующие центры могут использоваться в интересах органов управления высшего звена при осуществлении стратегического планирования, организации и анализе результатов мероприятий оперативной подготовки, формировании программ вооружения, разработке мобилизационных планов и проведении других подобных мероприятий.

Мобильные КЦ МВД могут применяться для усиления штабов оперативно-стратегического и оперативного звеньев при оперативном планировании и заблаговременной подготовке операций, а также в ходе проведения мероприятий оперативной (боевой) подготовки.

Таким образом, математическое моделирование в области вооруженного противоборства целесообразно, на наш взгляд, развивать по следующим основным направлениям:

Первое - создание штабных моделей, учитывающих основные влияющие на процесс противоборства факторы, с предельно простым интерфейсом для использования в составе СПО АСУВ при проведении сравнительной оценки решений на применение войск (сил). Наряду с этим можно рассмотреть возможность внедрения моделей в состав расчетно-моделирующих комплексов в целях проведения сравнительной оценки рассчитываемых вариантов в автоматическом режиме, незаметно для пользователя.

Второе - создание специализированных ПТК, в том числе мобильных, сопрягаемых с КСА АСУВ по входным и выходным данным, для моделирования в интересах решения сложных задач и задач с ограниченным доступом к информации.

Третье - создание вне рамок АСУВ многофункциональных КЦ МВД, включающих комплексы и системы математических моделей и расчетных задач в целях обеспечения решения широкого спектра задач оценки и прогнозирования обстановки в интересах принятия военно-политических решений, планирования военных действий и строительства Вооруженных Сил.

Предложенная классификация моделей, предлагаемый понятийный аппарат и подходы к реализации ММ для органов военного управления различного уровня позволит, на наш взгляд, четко определить место и принципы использования технологий математического моделирования в ВС РФ, выработать единый взгляд на методы применения ММ в системе строительства, планирования применения, подготовки и управления войсками (силами), упорядочить процесс их разработки и внедрения в практику деятельности органов военного управления.

Анализ состояния, перспектив развития моделирования и динамики роста затрат на разработку математических моделей военных действий в ВС ведущих государств мира, показывает серьезность отношения к этому вопросу за рубежом и служит дополнительным подтверждением актуальности рассматриваемых в данной статье вопросов.

Военная Мысль. 2004. № 10. С. 21-27; 2003. № 10. С. 71-73.

Военная Мысль. 2007. № 9. С. 13-16; 2007. № 10. С. 61-67; 2008. № 1. С. 57-62.

Военная Мысль. 2005. № 7. С. 9-11; 2006. № 12 С. 16-20.

Военная Мысль. 2007. № 10. С. 61-67; 2007. № 9. С. 13-16; 2008. № 3. С. 70-75.

Военная Энциклопедия. М.: Воениздат, 2001. Т. 5. С. 32.

Военный энциклопедический словарь. М.: МО РФ, Институт военной истории, 2002. С. 1664.

http://www.wikipedia.org._

Зарубежное военное обозрение. 2006. № 6. С. 17-23; 2008. № 11. С. 27-32.

Для комментирования необходимо зарегистрироваться на сайте

ВОЕННАЯ МЫСЛЬ № 12/1987, стр. 36-44

УПРАВЛЕНИЕ ВОЙСКАМИ

Б. А. КОКОВИ X ИН ,

контр-адмирал запаса, кандидат военно-морских наук, доцент

В статье излагается сугубо личное мнение автора. Приглашаем читателей высказать свое отношение к рассматриваемым в ней вопросам.

В ДАННОЙ статье рассматривается вопрос создания математических моделей (методик) для обоснования расчетами решений, принимаемых командующими (командирами) при подготовке и ведении боевых действий. В принципе эта проблема существует в течение всей истории войн и военного искусства, но наиболее остро встала в XX веке в связи с появлением и быстрым развитием новых видов оружия и техники. В настоящее время она заключается в том, чтобы создать такие математические модели, которые могли бы полнее обеспечивать практическую деятельность командующих (командиров) и их штабов.

Из-за ряда обстоятельств эта задача полностью еще не решена. Долгое время считалось, что основные трудности и неудачи в ее решении обусловлены недостаточными возможностями вычислительной техники и математики. При современном уровне их развития эта точка зрения становится неубедительной и несостоятельной. Сейчас первоочередное внимание уделяется методологической стороне проблемы. Поэтому прежде всего необходимо вскрыть, проанализировать и устранить причины, затрудняющие создание приемлемых для практики моделей операций (боевых действий). На мой взгляд, первая (главная) причина лежит в области основных понятий (категорий) теории войны и военного искусства, а поэтому прежде всего важно точно знать, что представляют собой вооруженная борьба и составляющие ее военные действия, называемые удар, бой, сражение, операция, каковы их сущность, внутреннее, объективно необходимое содержание и структура, как они взаимосвязаны между собой, чем отличаются друг от друга.

К сожалению, на эти вопросы, как мне представляется, нет четких, ясных, логически обоснованных ответов. Например, «боевые действия» теория определяет так: 1) организованные действия частей, соединений всех видов ВС при выполнении поставленных боевых задач. К боевым действиям оперативно-стратегического и стратегического масштаба обычно применяют термин «военные действия»; 2) форма оперативного применения объединений и соединений видов ВС в рамках операции (или между операциями) в составе объединения более крупного масштаба. Разновидностями боевых действий являются систематические боевые действия как особая форма оперативного применения объединений войск ПВО, ВВС, ВМФ. Эти неясные, противоречивые, неподдающиеся логическому объяснению определения, на мой взгляд, порождены масштабной классификацией, согласно которой действия войск принято подразделять на боевые, оперативные и стратегические не в зависимости от их сущности и объективно необходимого содержания, а «в зависимости от масштаба вооруженной борьбы, возможностей войск (сил), цели и характера боевых задач».

Возникает вопрос: можно ли разработать практически приемлемые математические модели, не оперируя достаточно точными и глубокими основными понятиями (категориями) военного искусства? Вообще можно. Но к чему это ведет? Прошло много лет, затрачено немало сил и средств, но проблема так и не нашла своего полного теоретического и практического решения. Более того, порой поднимается вопрос, в том ли направлении ведутся исследования. Если необходимые модели создавать без строгих и глубоких теоретических обоснований, получаемые с их помощью результаты не будут заслуживать полного доверия. «Нельзя успешно двигаться вперед методом проб и ошибок. Это дорого обходится обществу». Следовательно, для обеспечения надежного, теоретически обоснованного решения проблемы прежде всего надо уточнить и углубить наши понятия о сущности, содержании, структуре вооруженной борьбы, составных частях военного искусства.

Для этого требуется.

Первое. Твердо придерживаться марксистско-ленинского определения войны как организованной вооруженной борьбы между государствами или классами внутри государства, которая по своей социально-политической природе есть «продолжение политики насильственными средствами». «Насилие - это в настоящее время армия и военный флот...» (К. Маркс и Ф. Энгельс. Соч., т. 20, с. 171). Политическая, экономическая, идеологическая и другие формы борьбы не только не прекращаются, а, наоборот, ожесточаются во время войны, оказывая в конечном итоге решающее влияние на ее исход, что, однако, не изменяет сущности и объективно необходимого содержания войны как вооруженной борьбы. Данное в Советской Военной Энциклопедии определение войны как совокупности всех форм борьбы, включая и вооруженную, повторяет устаревшую точку зрения, существовавшую еще в начале XIX века. Я считаю, что такое определение искаженно отражает действительность, вносит путаницу в понимание предмета военной науки, затрудняет решение теоретических и прикладных проблем, в том числе и моделирования операций (боевых действий). Исторический опыт подтверждает, что военная наука всегда занималась и занимается войной как вооруженной борьбой и военным искусством, а поэтому теория войны и военного искусства - это и есть собственно «военная» наука, ее философская (фундаментальная) часть.

Второе . Отделить теорию войны и военного искусства от теоретических описаний типовых вариантов ведения войны и военных действий в зависимости от складывающихся условий военно-политической обстановки в мире и взглядов военного руководства противостоящих сторон Дело в том, что типовые варианты и взгляды в форме уставных положений подменили военную науку. Офицерский корпус командно-штабной специальности учится, работает, обучает подчиненных не по науке, а по взглядам; действия своих войск организуются по нашим взглядам, противник оценивается по его взглядам. Все это неизбежно ведет к принятию шаблонных решений, которые не могут в полной мере обеспечить разработку математических моделей, приемлемых для штабов.

Третье. Обучение офицерского состава и лиц, привлекаемых к моделированию военных действий, необходимо начинать с доказательства истинности (соответствия объективной действительности) категорий военной науки, подобно тому, как, например, в геометрии доказываются теоремы. В. И. Ленин подчеркивал: «Категории надо вывести (а не произвольно или механически взять) (не «рассказывая», не «уверяя», а доказывая)...» (Полн. собр. соч., т. 29, с. 86). Это позволит обучаемым одновременно познать сущность способов стратегических, оперативных, боевых действий и теорию военного искусства в целом.

В работе «Категории военного искусства в свете материалистической диалектики» сделана попытка вывести категории войны и военного искусства, уточнить и свести их во взаимосвязанную систему, сформулировать следующие основные положения.

Действия войск (сил) в войне («военные» действия) включают развертывание, переразвертывание и создание группировок: на театре военных действий - для ведения взаимосвязанных операций («стратегические» действия); в операции - для ведения взаимосвязанных боев («оперативные» действия); в бою - для взаимосвязанного применения оружия, а также само его применение по противнику («боевые» действия). Следовательно, в современных условиях при ведении войны только обычным оружием военные действия - это совокупность стратегических, оперативных и боевых (тактических) действий. В принципе они могут вестись любым количеством войск, но верхний предел их целесообразно ограничивать таким количеством, при дальнейшем увеличении которого вероятность выполнения поставленной задачи практически остается на том же уровне.

Вооруженная борьба и составляющие ее военные действия ведутся не вообще, как кто хочет, а объективно необходимыми способами, которыми являются бой, операция, перегруппировка, военные действия. Способ - это организованные определенным образом действия войск данного состава при выполнении поставленной задачи в конкретных условиях сложившейся обстановки. Военные действия, как бы они ни назывались, есть не что иное, как проявление сущностей основных способов при различном их сочетании. При этом действия войск как одной, так и другой стороны в ходе войны непрерывно переходят друг в друга в строго определенной последовательности, которую невозможно изменить. Сущность их заключается в объединении и сосредоточении усилий, возможностей войск там и в тот момент, где и когда это необходимо. В бою это достигается путем объединения огневой мощи для поражения тех объектов (группировок) противника, уничтожением (выводом из строя) которых обеспечивается выполнение поставленной задачи. Такой путь позволяет значительно увеличить общую силу натиска или сопротивления войск, по отношению к арифметической сумме индивидуальных возможностей боевых единиц создать необходимое превосходство над противником и нанести ему поражение. В операции - объединением конечных результатов действий войск во всех боях, составляющих данную операцию, для поражения тех группировок и объектов противника, уничтожением которых обеспечивается выполнение поставленной задачи.

При этом предполагается не только поражение избранных объектов, но и использование результатов действий войск в одних боях для повышения их эффективности в других. При перегруппировке на ТВД - путем развертывания и переразвертывания войск при всестороннем их обеспечении в целях своевременного создания полностью подготовленных группировок для ведения операций в решающем месте и в решающий момент войны; в войне - объединением и использованием во взаимных интересах конечных результатов действий войск во всех операциях, направленных на разгром вооруженных сил противника на данном театре военных действий, а также путем своевременного создания всесторонне обеспеченных группировок для ведения запланированных операций.

На основании изложенного можно сказать, что для практической деятельности командующих (командиров) и их штабов требуется разрабатывать математические модели способов ведения боя (операции) на основе того качественного и количественного состава войск, который выделен или может быть выделен для выполнения поставленной задачи с учетом внутренней структуры войны и военного искусства (схема 1). При их создании важно также учитывать естественно-исторический процесс развития и смены способов ведения войны, составляющие ее военные действия в зависимости от появления и развития новых видов оружия и технических средств (схема 2).

Четвертое. Теорию войны и военного искусства, т. е. философскую (фундаментальную) часть военной науки, необходимо вывести из узковедомственного подчинения и передать в Академию наук СССР, где она должна быть представлена наравне со всеми другими общественными науками. Это, на мой взгляд, единственно реальный путь, способный поднять военную науку на более высокий, качественно новый уровень, обеспечивающий надежное, теоретически обоснованное решение многих прикладных проблем, в том числе и моделирования военных действий.

Вторая причина трудностей в разработке моделей заключается в том, что сейчас к ним предъявляется требование - учесть по возможности все факторы, которые могут влиять на организацию и ведение операции (боевых действий). Это неизбежно ведет к резкому увеличению непредсказуемой исходной информации. Такие модели могут быть использованы лишь в исследовательских целях, но не для работы командующих (командиров) и штабов при планировании военных действий.

В настоящее время модели разрабатываются заранее и представляют собой математический аналог типового боя (операции), в котором в максимально возможной степени учитываются: существующая организационная структура войск (сил), их штатный количественный и качественный состав; типовые параметры различных военных действий, зафиксированные в руководящих документах; конкретные военно-географические условия театров военных действий и др. Причем это касается как наших войск, так и противника. В жизни конкретные военные действия никогда полностью не совпадают с типовыми. Учитывая, что организация, штатный состав войск (сил) и другие условия непрерывно и быстро изменяются, разработанные модели также теряют свою практическую ценность. Это третья причина.

Четвертая заключается в том, что специалисты в области военного искусства (операторы) активно участвуют в создании типовых математических моделей военных действий, моделируют их только в части, касающейся разработки словесной модели в виде формулирования возможных вариантов решений воюющих сторон. Исходная информация закладывается заранее. Недостающая ее часть, необходимая для того, чтобы модель «работала» в условиях конкретной обстановки, периодически уточняется и выбирается из так называемой постоянной информации.

Общий недостаток штабных моделей заключается в том, что с их помощью можно оценить только одну сторону военного искусства командира (командующего), принимающего решение, которая характеризует его умение организовывать действия войск в целях максимального использования их потенциальных возможностей. Вторая (с точки зрения военного искусства более сложная и трудная сторона) - использование, а при возможности и создание (путем введения противника в заблуждение, быстрого и неожиданного маневра войск и т. д.) условий, позволяющих ослабить противника и значительно увеличить объединенные усилия своих войск на главном направлении в решающий момент боя (операции),- существующими моделями оценивается слабо.

На основании изложенных выше положений, касающихся теории войны и военного искусства, мною предлагается один из возможных подходов, который может обеспечить создание практически приемлемых для штабов математических моделей военных действий . Суть его сводится к следующему.

Каждая модель боя (операции) должна уточняться соответствующим командующим (командиром) и его штабом на основе той информации, которой они располагают в период выработки и принятия решения, при определении только замыслов действий противостоящих сторон.

Почему только замыслов?

Исторический опыт свидетельствует о том, что фактический ход военных действий обычно соответствовал именно замыслам действий сторон и никогда не совпадал полностью с подробно разработанными решениями (планами) независимо от того, какая сторона (наступающая или обороняющаяся) достигла или не достигла своей цели. Например, немецко-фашистская армия, военачальники которой отличались скрупулезностью, особенно при планировании внезапного нападения, успешно начала войну против Советского Союза и вела ее в 1941 году в соответствии с замыслом, положенным в основу плана «Барбаросса». Однако в дальнейшем ход событий значительно отличался от плана. Б конечном итоге цель войны не была достигнута из-за недостаточной обоснованности ее замысла: не были учтены единство, сплоченность советского народа и беспримерный героизм наших воинов.

Таким образом, модель, разработанная на основе информации, описывающей подробно предстоящий ход военных действий сторон, будет заведомо не соответствовать фактическому ходу событий, и результаты расчетов окажутся весьма сомнительными. При применении предлагаемого подхода важно, чтобы в формулировках замыслов действий сторон четко просматривалась сущность военного искусства, которая, на мой взгляд, заключается в умении стать сильнее противника, создать подавляющее превосходство над ним в решающий момент и в решающем месте войны и составляющих ее военных действий. (Здесь речь идет не о создании общего военного превосходства в глобальном масштабе, чего добиваются Соединенные Штаты Америки, а об искусстве (умении) победить имеющимися силами агрессора в случае его нападения). Понимание этого является той основой, которая объединяет в диалектическом единстве стратегию, оперативное искусство и тактику. Вместе с тем каждая составная часть военного искусства имеет свою сущность. Но, по моему мнению, сущность стратегии, оперативного искусства и тактики состоит в умении создать подавляющее превосходство над противником в решающий момент, в решающем месте путем объединения и взаимного использования конечных результатов всех операций (боев), направленных на достижение поставленной цели, а также в способности применять условия конкретной обстановки в интересах своевременного развертывания всесторонне обеспеченных группировок для ведения запланированных операций (боев).

Разработка моделей (производство расчетов) и анализ их результатов могут иметь следующий порядок: определяются общее соотношение сил сторон в районе проведения операции (боя) к моменту ее начала, а также варианты замыслов действий противника и своих войск; выбирается критерий оценки возможных замыслов; вычисляются по избранному критерию ожидаемые результаты при всех сочетаниях вариантов их замыслов; анализируются результаты и выбирается наиболее целесообразный замысел операции (боя).

При определении каждого варианта действий той и другой стороны, избираемого для оценки, требуется сформулировать: где (на каком направлении, в каком районе, в какой зоне, полосе и против каких объектов противника), когда (в какой момент, период) и как (каким путем, способом, приемом и т. п.) необходимо создать подавляющее превосходство над противником. Изменение ответа хотя бы на один изэтих вопросов рождает новый вариант замысла действий данной стороны.

Критерием оценки вариантов действий сторон при всех возможных их сочетаниях может служить вероятность нанесения поражения противнику (выполнения поставленной задачи) или соотношение сил сторон на главном направлении в решающий момент операции (боя). Переведя это на язык математики, можно сказать: на главном направлении в решающий момент надо суметь (именно «суметь» - в этом заключается искусство военачальника в пределах материальных возможностей войск) создать такое соотношение сил в свою пользу, при котором поставленная задача была бы выполнена с вероятностью, например, не менее 0,8. При этом следует подчеркнуть, что речь идет о качественном соотношении сил сторон, выраженном количественными величинами. Такая вероятность поражения служит критерием, обеспечивающим выбор наиболее целесообразных вариантов замысла предстоящей операции.

Анализ результатов расчетов и выбор оптимального варианта замысла операции (боя) целесообразно производить с помощью теории игр. При этом следует иметь в виду, что в данном случае определяются такие варианты, применяя которые противостоящие стороны не рискуют проиграть больше или выиграть меньше, чем это возможно по избранному критерию в данной обстановке.

Если противник равный или сильнее как по составу войск, так и по уровню военного искусства, выбор «гарантированных» замыслов никогда не сможет обеспечить достижение победы. Поэтому в предлагаемом методе моделирования операции (боевых действий) для анализа с помощью теории игр нужно отобрать только те варианты замыслов сторон, при которых достигается подавляющее превосходство над противником в решающий момент, в решающем месте боя (операции). Естественно, это рискованно, но без этого победить сильного противника нельзя. Из них можно выбрать относительно лучший по критерию, который должен установить командующий (командир), вырабатывающий замысел.

Применение предлагаемого подхода к созданию математических моделей попытаемся показать на двух классических примерах.

В известном сражении при Каннах (216 г. до н. э.) карфагенский полководец Ганнибал, несмотря на двойное общее численное превосходство противника, почти полностью уничтожил римское войско. Общий численный состав и потери сторон были следующими:

Это была не случайная победа. Еще до начала боя Ганнибал поставил перед собой цель не просто добиться успеха, а полностью уничтожить римскую армию. Свой замысел он искусно претворил в жизнь.

Римская пехота была построена в боевой порядок (фалангу), имеющий не менее 34 шеренг в глубину и около 1700 человек по фронту. Конница располагалась на флангах. Войска Ганнибала строились в шесть колонн, из которых две средние (общим числом 20 тыс. человек) состояли из слабой испанской и недавно навербованной галльской пехоты. Их окаймляли две колонны по 6 тыс. африканских испытанных ветеранов. На флангах пехоты находились кавалерийские колонны: на левом - тяжеловооруженная конница (кирасиры Газдрубала), на правом- легкая конница (преимущественно нумидийская).

Дальнейший ход событий был следующий. С началом боя конница Газдрубала опрокинула римских всадников, частью сил помогла нумидийской коннице обратить в бегство римских всадников на левом фланге римской пехоты и главными силами бросилась на тыл фаланги, заставив ее сначала повернуться назад, а потом остановиться. В центре фронта после короткой схватки римляне решительно атаковали галлов и испанцев, нанесли им большие потери и заставили карфагенский Центр попятиться. Личное присутствие здесь Ганнибала удержало галлов от разрыва фронта и бегства. В этот решительный момент под влиянием удара с тыла римская фаланга остановилась, что означало ее гибель, только крайние шеренги окруженной толпы римских легионов могли действовать оружием, а задние - представляли мишень для летящих камней, дротиков и стрел. Исход боя был решен. Дальше было побоище.

Исходя из фактического хода событий, словесную модель действий карфагенских войск, т. е. замысел Ганнибала, можно сформулировать так: малыми силами сдержать первый натиск фаланги римской пехоты в центре, смести римскую конницу на флангах, полностью окружить и ударом с тыла остановить продвижение фаланги, лишив ее тем самым наступательной силы, и, используя ее неповоротливость и слабую обученность римской пехоты, полностью разгромить противника. Замысел римского полководца Сервилия: всю силу пехоты направить на центр боевого построения карфагенян, решительной атакой смять противника, обратив его в бегство, после чего поочередно разбить разрозненные Части пехоты и кавалерии.

Суть сложившейся конфликтной ситуации и весь расчет сводятся здесь к решению одного вопроса: у кого было больше шансов - у Ганнибала, чтобы сдержать натиск римской фаланги в центре до того момента, когда конница Газдрубала нанесет по ней удар с тыла и остановит ее, или у Сервилия, чтобы сокрушить центр боевого построения карфагенян, прежде чем остановить и перестроить фалангу для действий на других направлениях? Математического описания самих действий войск сторон для решения этого вопроса не требуется.

Проанализировав, как говорится, «обратным ходом» конечный результат боя с позиций сущности военного искусства, можно сказать, что в решающий момент боя на решающем направлении (в центре) Ганнибал сумел создать (за счет удара, по фаланге с тыла) подавляющее (по меньшей мере четырехкратное) превосходство над противником и тем самым не допустил сокрушения центра своей пехоты.

В ходе Великой Отечественной войны при ведении военных действий на сталинградском направлении сложилась ситуация, аналогичная рассмотренной выше, только при другом общем количественном соотношении войск воюющих сторон и значительно большем размахе военных действий. Судя по фактическому ходу событий, общий замысел наших войск заключался в том, чтобы малыми силами удержать правый берег Волги в районе Сталинграда, сосредоточить на флангах немецко-фашистской группировки превосходящие силы, сходящимися ударами окружить и уничтожить ее.

Для обоснования этого замысла, на мой взгляд, достаточно создать такую математическую модель, которая решала бы один вопрос: кто имеет больше шансов - наши войска, чтобы удержать плацдарм на правом берегу Волги по меньшей мере до полного окружения противника, или противник, которому необходимо было сбросить наши обороняющиеся войска в Волгу прежде, чем повернуть свои войска навстречу нашим наступающим войскам? Разрабатывать для обоснования данного замысла сложную математическию модель таких крупномасштабных военных действий было бы нецелесообразно: она не дала бы более точных, заслуживающих доверия результатов. Скорее наоборот.

Конечно, анализируя отдельные примеры, нельзя делать категоричных выводов. Но некоторые соображения высказать можно.

Первое. Модели, не учитывающие военное искусство полководцев, будут неполно отражать объективную действительность и всегда давать однозначный ответ: победит сторона, которая имеет численное превосходство и большие материальные возможности. Применение таких моделей научит офицеров побеждать числом, а не умением. Чтобы учесть в математических моделях уровень военного искусства и выработать соответствующие коэффициенты, необходимо тщательно проанализировать исторический опыт, как это показано выше на двух примерах.

Второе. Основным условием успешного использования предлагаемого подхода является умение выявлять суть конфликтных ситуаций, складывающихся при подготовке и ведении военных действий, и оценить их с точки зрения сущности военного искусства.

Третье. Чем короче, четче и яснее сформулированы замыслы действий сторон, тем легче выявить сущность складывающейся конфликтной ситуации и определить вопрос, требующий расчетов для своего решения. Чем проще модель, тем она ближе к действительности, менее искаженно ее отражает, требует меньше исходной информации. Очевидно, что и математический аппарат для таких моделей также будет несложным (в пределах теории вероятностей и теории игр).

Напомним, что предлагаемый подход относится только к моделям для обоснования замыслов принимаемых решений. Математические модели для исследовательских целей, графического отображения на экране принимаемых решений по текущей обстановке и другие здесь не рассматриваются.

В заключение отметим, что заслуживает внимания еще один в общем-то известный подход к созданию моделей (которые условно можно назвать «дуэльными»), когда командующий (командир) играет «шахматную партию» с ЭВМ, имитирующей противника. Конечно, этот путь сложный, трудоемкий, но, на мой взгляд, перспективный с точки зрения повышения эффективности обучения офицеров военному искусству.

Математическая модель и методика оперативно-тактических расчетов - одно и то же.

Военная Мысль.- 1987.- № 7.- С 33-41

Военный энциклопедический словарь.- М.: Воениздат, 1986.- С. 89

Там же.-С. 145.

Материалы Пленума Центрального Комитета КПСС, 25-26 июня 1987 г.- М. Политиздат, 1987.-С. 12.

Советский энциклопедический словарь.- М.: Сов. энциклопедия, 1983.- С. 238

Военный энциклопедический лексикон.- Ч. III.- СПб, 1839.- С. 454.

Морской атлас-Т. III.- Ч. 1.-МО СССР, 1958 -Л. 1,

Для комментирования необходимо зарегистрироваться на сайте

Процесс создания математических моделей боевых действий трудоемок, длителен и требует использования труда специалистов достаточно высокого уровня, имеющих хорошую подготовку как в предметной области, связанной с объектом моделирования, так и в области прикладной математики, современных математических методов, программирования, знающих возможности и специфику современной вычислительной техники. Отличительной особенностью математических моделей боевых действий, создаваемых в настоящее время, является их комплексность, обусловленная сложностью моделируемых объектов. Необходимость построения таких моделей требует разработки системы правил и подходов, позволяющих снизить затраты на разработку модели и уменьшить вероятность появления трудноустранимых впоследствии ошибок. Важной составной частью такой системы правил являются правила, обеспечивающие корректный переход от концептуального к формализованному описанию системы на том или ином математическом языке, что достигается выбором определенной математической схемы. Под математической схемой понимается частная математическая модель преобразования сигналов и информации некоторого элемента системы, определяемая в рамках конкретного математического аппарата и ориентированная на построение моделирующего алгоритма данного класса элементов сложной системы .

В интересах обоснованного выбора математической схемы при построении модели целесообразно провести ее классификацию по цели моделирования, способу реализации, типу внутренней структуры, сложности объекта моделирования, способу представления времени.

Необходимо отметить, что выбор классификационных признаков определяется конкретными целями исследования. Целью классификации в данном случае является, с одной стороны, обоснованный выбор математической схемы описания процесса боевых действий и ее представление в модели в интересах получения достоверных результатов, а с другой - выявление особенностей моделируемого процесса, которые необходимо учитывать.

Цель моделирования - исследование динамики протекания процесса вооруженной борьбы и оценка показателей эффективности боевых действий. Под такими показателями понимается численная мера степени выполнения боевой задачи, которую количественно можно представить, например, относительной величиной предотвращаемого ущерба объектам обороны или наносимого противнику ущерба.

Способ реализации должен состоять в формализованном описании логики функционирования образцов вооружения и военной техники (ВВТ) в соответствии со своими аналогами в реально протекающем процессе. Необходимо учитывать, что современные образцы ВВТ - это сложные технические системы, решающие комплекс взаимосвязанных задач, которые тоже являются сложными техническими системами. При моделировании таких объектов целесообразно сохранить и отразить как естественный состав и структуру, так и алгоритмы боевого функционирования модели. Причем в зависимости от целей моделирования может потребоваться варьирование этими параметрами модели (составом, структурой, алгоритмами) для различных вариантов расчета. Данное требование определяет необходимость разрабатывать модель конкретного образца ВВТ как составную модель его подсистем, представляемых взаимосвязанными компонентами.

Таким образом, по классификационному признаку тип внутренней структуры модель должна быть составной и многокомпонентной, по способу реализации - обеспечивать имитационное моделирование боевых действий.

Сложность объекта моделирования. При разработке компонент, определяющих состав моделей образцов ВВТ, и объединении моделей образцов ВВТ в единую модель боевых действий необходимо учитывать отличающиеся на порядки характерные масштабы осреднения по времени величин, фигурирующих в компонентах.

Конечной целью моделирования является оценка показателей эффективности боевых действий. Именно для расчета этих показателей и разрабатывается модель, воспроизводящая процесс боевых действий, который условно назовем главным. Характерный временной масштаб всех остальных входящих в него процессов (первичной обработки радиолокационной информации, сопровождения целей, наведения ракет и др.) много меньше главного. Таким образом, все протекающие в вооруженной борьбе процессы целесообразно разделить на медленные, прогноз развития которых интересует, и быстрые, характеристики которых не интересуют, однако их влияние на медленные необходимо учитывать. В таких случаях характерный временной масштаб осреднения выбирается так, чтобы иметь возможность составить модель развития главных процессов. Что касается быстрых процессов, то в рамках создаваемой модели необходим алгоритм, позволяющий в моменты осуществления быстрых процессов учитывать их влияние на медленные.

Возможны два подхода к моделированию влияния быстрых процессов на медленные. Первый состоит в разработке модели их развития с соответствующим характерным временным масштабом осреднения, много меньшим, чем у главных процессов. При расчете развития быстрого процесса в соответствии с его моделью характеристики медленных процессов не меняются. Результатом расчета является изменение характеристик медленных процессов, с точки зрения медленного времени происходящее мгновенно. Для того чтобы иметь возможность реализовать этот способ расчета влияния быстрых процессов на медленные, необходимо вводить соответствующие внешние величины, идентифицировать и верифицировать их модели, что усложняет все этапы технологии моделирования.

Второй подход состоит в отказе от описания развития быстрых процессов с помощью моделей и рассмотрения их характеристик в качестве случайных величин. Для реализации этого способа необходимо иметь функции распределения случайных величин, которые характеризуют влияние быстрых процессов на медленные, а также алгоритм, определяющий моменты наступления быстрых процессов. Вместо расчета развития быстрых процессов производится выброс случайного числа и в зависимости от выпавшего значения в соответствии с известными функциями распределения случайных величин определяется значение, которое примут зависимые показатели медленных процессов, таким образом учитывается влияние быстрых процессов на медленные. В результате характеристики медленных процессов также становятся случайными величинами.

Необходимо отметить, что при первом способе моделирования влияния быстрых процессов на медленные быстрый процесс становится медленным, главным, и на его протекание влияют быстрые уже по отношению к нему процессы. Эта иерархическая вложенность быстрых процессов в медленные - одна из составляющих того качества моделирования процесса вооруженной борьбы, которое относит модель боевых действий к структурно-сложной.

Способ представления модельного времени. На практике используют три понятия времени: физическое, модельное и процессорное. Физическое время относится к моделируемому процессу, модельное - к воспроизведению физического времени в модели, процессорное - это время выполнения модели на компьютере. Соотношение физического и модельного времени задается коэффициентом K, определяющим диапазон физического времени, принимаемого за единицу модельного времени.

В силу дискретного характера взаимодействия образцов ВВТ и их представления в виде компьютерной модели модельное время целесообразно задавать путем приращения дискретных временных отрезков. При этом возможны два варианта его представления: 1) дискретное время есть последовательность равноудаленных друг от друга вещественных чисел; 2) последовательность временных точек определяется значимыми событиями, происходящими в моделируемых объектах (событийное время). С точки зрения вычислительных ресурсов второй вариант более рационален, поскольку позволяет активизировать объект и имитировать его работу только при наступлении некоторого события, а в промежутке между событиями предполагать, что состояние объектов остается неизменным.

Одной из основных задач при разработке модели является выполнение требования синхронизации всех моделируемых объектов по времени, то есть правильное отображение порядка и временных отношений между изменениями в процессе боевых действий на порядок выполнения событий в модели. При непрерывном представлении времени считается, что существуют единые для всех объектов часы, которые показывают единое время. Передача информации между объектами происходит мгновенно, и таким образом, сверяясь с едиными часами, можно установить временную последовательность всех происходивших событий. Если в модели существуют объекты с дискретным представлением времени, для формирования единых часов модели необходимо объединить множество временных отсчетов моделей объектов, упорядочить и доопределить значения сеточных функций на недостающих временных отсчетах. Синхронизировать модели объектов с событийным временем можно только явно, путем передачи сигнала о наступлении события. При этом необходима управляющая программа-планировщик организации выполнения событий различных объектов, которая и определяет требуемый хронологический порядок выполнения событий.

В модели боевых действий необходимо совместно использовать событийное и дискретное время, такое представление времени называют гибридным. При его использовании моделируемые объекты приобретают свойство изменять значения некоторых показателей состояния скачкообразно и практически мгновенно, то есть становятся объектами с гибридным поведением.

Подводя итог приведенной классификации, можно сделать вывод о том, что модель боевых действий должна представлять собой составную, структурно-сложную, многокомпонентную, динамическую, имитационную модель с гибридным поведением.

Для формализованного описания такой модели целесообразно использовать математическую схему на основе гибридных автоматов . В этом случае образцы ВВТ представляются многокомпонентными активными динамическими объектами. Компоненты описываются набором переменных состояния (внешние и внутренние), структурой (одноуровневой или иерархической) и поведением (карта поведения). Взаимодействие между компонентами осуществляется посредством посылки сообщений. Для объединения компонент в модель активного динамического объекта используются правила композиции гибридных автоматов.

Введем следующие обозначения:

sÎRn - вектор переменных состояния объекта, который определяется совокупностью входных воздействий на объект , воздействий внешней среды , внутренних (собственных) параметров объекта hkÎHk,;

Множество вектор-функций, определяющих закон функционирования объекта во времени (отражают его динамические свойства) и обеспечивающих существование и единственность решения s(t);

S0 - множество начальных условий, включающее все начальные условия компонент объекта, порождаемые функцией инициализации в процессе функционирования;

Предикат, определяющий смену поведения объекта (выделяет из всех специально отобранных состояний нужное, проверяет условия, которые должны сопутствовать наступившему событию, и принимает при их выполнении значение истина), задается множеством булевских функций;

Инвариант, определяющий некое свойство объекта, которое должно сохраняться на заданных промежутках времени, задается множеством булевских функций;

- множество вещественных функций инициализации, ставящих в соответствие значению решения в правой конечной точке текущего промежутка времени значение начальных условий в левой начальной точке на новом временном промежутке :s()=init(s());

Гибридное время, задается последовательностью временных отрезков вида , - замкнутые интервалы.

Элементы гибридного времени Pre_gapi, Post_gapi являются «временной щелью» очередного такта гибридного времени tH={t1, t2,…}. На каждом такте на отрезках локального непрерывного времени гибридная система ведет себя как классическая динамическая система до точки t*, в которой становится истинным предикат, определяющий смену поведения. Точка t* является конечной точкой текущего и началом следующего интервала. В интервале расположены две временные щели, в которых могут изменяться переменные состояния. Течение гибридного времени в очередном такте ti=(Pre_gapi,, Post_gapi) начинается с вычисления новых начальных условий во временной щели Pre_gapi. После вычисления начальных условий проводится проверка предиката на левом конце нового промежутка времени. Если предикат принимает значение истина, оcуществля-ется переход сразу во вторую временную щель, в противном случае выполняется дискретная после-довательность действий, соответствующих текущему такту времени. Временная щель Post_gapi предназначена для выполнения мгновенных дейст-вий после завершения длительного поведения на данном такте гибридного времени.

Под гибридной системой H понимается математический объект вида

.

Задача моделирования заключается в нахождении последовательности решений Ht={(s0(t),t, t0), (s1(t),t,t1),…}, определяющих траекторию гибридной системы в фазовом пространстве состояний. Для нахождения последовательности решений Ht необходимо проводить эксперимент или имитацию на модели при заданных исходных данных. Другими словами, в отличие от аналитических моделей, с помощью которых получают решение известными математическими методами, в данном случае необходим прогон имитационной модели, а не решение. Это означает, что имитационные модели не формируют свое решение в том виде, в каком это имеет место при использовании аналитических моделей, а являются средством и источником информации для анализа поведения реальных систем в конкретных условиях и принятия решений относительно их эффективности.

В 2 ЦНИИ МО РФ (г. Тверь) на основе представления моделируемых объектов в виде гибридных автоматов разработан имитационный моделирующий комплекс (ИМК) «Селигер», предназначенный для оценки эффективности группировок сил и средств воздушно-космической обороны при отражении ударов средств воздушно-космическо-го нападения (СВКН). Основу комплекса составляет система имитационных моделей объектов, имитирующая алгоритмы боевого функционирования реальных образцов ВВТ (зенитно-ракетный комплекс, радиолокационная станция, комплекс средств автоматизации командного пункта (для радиотехнических войск - радиолокационной роты, батальона, бригады, для зенитно-ракетных войск - полка, бригады и др.), боевой авиационный комплекс (истребительной авиации и средств воздушно-космического нападения), средства радиоэлектронного подавления, огневые комплексы нестратегической противоракетной обороны и др.). Модели объектов представлены в виде активных динамических объектов (АДО), в состав которых входят компоненты, позволяющие исследовать в динамике различные процессы при их функционировании.

Например, радиолокационная станция (РЛС) представлена следующими компонентами (рис. 1): антенная система (АС), радиопередающее устройство (РПрдУ), радиоприемное устройство (РПрУ), подсистема защиты от пассивных и активных помех (ПЗПАП), блок первичной обработки информации (ПОИ), блок вторичной обработки информации (ВОИ), аппаратура передачи данных (АПД) и др.

Композиция данных компонент в составе модели РЛС позволяет адекватно моделировать процессы приема-передачи сигналов, обнаружения эхосигналов и пеленга, алгоритмы помехозащиты, измерения параметров сигнала и др. В результате моделирования рассчитываются основные показатели, характеризующие качество РЛС как источника радиолокационной информации (параметры зоны обнаружения, точностные характеристики, разрешающая способность, производительность, помехозащищенность и т.п.), что позволяет оценить эффективность ее работы при различных условиях помехоцелевой обстановки.

Синхронизация всех моделируемых объектов по времени, то есть правильное отображение порядка и временных отношений между изменениями в процессе боевых действий на порядок выполнения событий в модели, осуществляется программой управления объектами (рис. 2). В функции данной программы также входят создание и удаление объектов, организация взаимодействия между объектами, протоколирование всех событий, происходящих в модели.

Использование протокола событий позволяет проводить ретроспективный анализ динамики боевых действий любым моделируемым объектом. Это дает возможность оценить степень адекватности моделей объектов как с использованием методов предельных точек, так и посредством контроля корректности моделирования процессов в компонентах объекта (то есть проверка адекватности методом прогона от входа к выходу ), что повышает достоверность и обоснованность получаемых результатов.

Необходимо отметить, что многокомпонентный подход позволяет варьировать их составом (например, исследовать боевую работу ЗРК с различным типом АСЦУ) в интересах синтеза структуры, удовлетворяющей определенным требованиям. Причем за счет типизации программного представления компонент, без перепрограммирования исходного кода программы.

Общим преимуществом данного подхода при построении модели является возможность оперативного решения ряда исследовательских задач: оценка влияния изменения состава и структуры системы управления (количество уровней, цикл управления и др.) на эффективность боевых действий группировки в целом; оценка влияния различных вариантов информационного обеспечения на потенциальные боевые возможности образцов и группировки в целом, исследование форм и способов боевого применения образцов и др.

Построенная на основе гибридных автоматов модель боевых действий представляет собой суперпозицию совместного поведения параллельно и/или последовательно функционирующих и взаимодействующих многокомпонентных АДО, являющихся композицией гибридных автоматов, функционирующих в гибридном времени и взаимодействующих через связи на основе сообщений.

Литература

1. Сирота А.А. Компьютерное моделирование и оценка эффективности сложных систем. М.: Техносфера, 2006.

2. Колесов Ю.Б., Сениченков Ю.Б. Моделирование систем. Динамические и гибридные системы. СПб: БХВ-Петербург, 2006.

Для обучения войск ВКО необходима новая материально-техническая база, создаваемая на основе современных максимально унифицированных технических средств обучения, разработанных с использованием современных технологий

Обеспечение высокого уровня подготовленности личного состава – от уровня отдельных подразделений до высших звеньев управления – с одновременным снижением материальных и финансовых затрат является весьма актуальным проблемным вопросом для подготовки войск (сил) и органов управления Войск ВКО.

Необходимость решения в настоящее время данного вопроса обусловлена следующими факторами:

  • постоянным изменением характеристик средств вооруженной борьбы вероятного противника;
  • возрастающей динамикой боевых действий;
  • участием разнородовых и разновидовых сил и средств ПВО и ПРО при решении задач ВКО;
  • ограниченными возможностями используемого типажа воздушных мишеней по созданию воздушной и помеховой обстановки при проведении тактических учений с боевой стрельбой на полигонах МО РФ;
  • возрастающей стоимостью проведения полномасштабных учений и совместных тренировок боевых расчетов различных уровней управления видов и родов войск;
  • ограниченными возможностями существующих тренажерных средств по комплексированию их в тренажерные комплексы и тренажные системы в интересах комплексной подготовки войск и органов управления ВКО.

Возможным подходом к решению проблемных вопросов, связанных с организацией и проведением мероприятий боевой и оперативной подготовки, может быть использование современных технологий моделирования вооруженного противоборства, применяемых в технических средствах обучения (ТСО) для подготовки войск (сил) и органов управления ВКО.

В настоящее время рядом организаций промышленности: Центром совместных технологических разработок, НИИ «Центрпрограммсистем», ЗАО «ЦНТУ «Динамика», ЗАО «НИИ ТС «Синвент», Конструкторским бюро приборостроения, ОАО «Тулаточмаш» и т. д. ведутся работы по созданию современных ТСО для Войск ВКО и разработке перспективных технологий моделирования военных действий и тренажа специалистов войск (сил) и органов управления соединений, объединений ВКО.

Однако их усилия в основном сосредоточены на создании технических средств обучения тактического уровня в виде автономных однородных тренажеров. Эти работы не предполагают интеграцию тренажеров и тренажерных комплексов в тренажные системы внутривидового и межвидового применения, что резко сужает область их применения при подготовке воинских формирований (ВФ) и органов управления, решающих задачи ВКО.

В общем случае типаж ТСО для Войск ВКО может включать:

  • учебно-тренировочные средства;
  • тренажерные комплексы;
  • тренажные системы внутривидового применения;
  • тренажные системы межвидового применения.

При этом следует различать, что учебно-тренировочное средство (УТС) – это аппаратно-программный комплекс, обеспечивающий полный цикл подготовки номеров боевого расчета одного уровня управления (подразделения) за счет проведения автоматизированного теоретического обучения по требуемым видам подготовки, формирования начальных навыков и умений ведения боевой работы (боя) путем проведения индивидуальных и автономных тренировок.

Тренажерный комплекс (ТК) – это структурно-организационное объединение информационно-сопряженных территориально разнесенных УТС, обеспечивающих требуемый уровень практической подготовленности расчетов различных уровней управления с учетом реализованного в образцах ВВТ уровня автоматизации процесса ведения боя путем проведения комплексных (двухстепенных) тренировок в требуемых условиях боевого применения ВВТ.

Тренажная система внутривидового применения (ТС ВП) – это структурно-организационное объединение информационно-сопряженных территориально разнесенных ТК и УТС в тактическом соединении войск, обеспечивающее требуемый уровень практической подготовленности и слаженности расчетов различных уровней управления путем проведения совместных (трехстепенных) тренировок соединений воинских формирований одного вида ВС.

Тренажная система межвидового применения (ТС МП) – это структурно-организационное объединение информационно сопряженных территориально разнесенных ТК и ТС внутривидового применения в оперативно-тактическом соединении войск, обеспечивающее требуемый уровень слаженности расчетов различных уровней управления путем проведения совместных тренировок соединений воинских формирований нескольких видов ВС.

В этой связи создаваемые технические средства обучения боевых расчетов КП и ПУ различного уровня управления Войск ВКО с учетом возможного привлечения разновидовых сил и средств для подготовки к решению задач ВКО должны рассматриваться на всех уровнях предложенной классификации по предназначению в зависимости от особенностей проведения мероприятий боевой и оперативной подготовки.

Основными проблемными вопросами, которые остаются при разработке тренажных средств, являются:

  • обеспечение высокой степени адекватности имитации работы оборудования, систем и средств образцов ВВТ и органов управления;
  • обеспечение требуемой степени адекватности имитируемой воздушной и наземной (при необходимости и морской) обстановки реальной;
  • обеспечение единой имитируемой воздушной и наземной обстановки для всех средств ВВТ и воинских формирований, задействованных в тренировках;
  • сопряжение территориально-разнесенных УТС и тренажерных комплексов в системы более высокого уровня для проведения многостепенных тренировок органов управления;
  • синхронизация во времени работы территориально разнесенных тренажеров и тренажерных комплексов для проведения различных видов тренировок в составе тренажных систем;
  • обеспечение объективности оценивания уровня профессиональной подготовленности специалистов, боевых расчетов и органов управления по результатам документирования их деятельности в процессе подготовки.

Для обучения Войск ВКО необходима новая материально-техническая база, создаваемая на основе современных максимально унифицированных ТСО, разработанных с использованием современных технологий. Подготовка высококвалифицированных специалистов и органов управления, готовых и способных в любой момент времени качественно решать возложенные на них задачи в любых условиях обстановки, практически невозможна без систематических тренировок с моделированием ситуаций, которые могут возникнуть в реальной боевой обстановке, включая нестандартные (нештатные, аварийные) ситуации.

Учитывая отечественную и зарубежную практику разработки ТСО, предлагается следующая концепция их создания:

  • во-первых, это создание многоуровневой системы имитационных и математических моделей средств образцов вооружения и военной техники (ВВТ) при подготовке ВФ (рис. 1);

  • во-вторых, это интеграция созданных имитационных моделей образцов ВВТ, элементов ВФ и тренажных средств в единую моделирующую среду с целью создания и использования единого виртуального боевого пространства при проведении мероприятий боевой и оперативной подготовки (рис. 2);

  • в-третьих, имитационные модели образцов ВВТ и тренажные средства должны взаимодействовать между собой и с моделирующей средой посредством реализации стандарта распределенного моделирования IEEE-1516, то есть по технологии HLA – High Level Architecture (рис. 3).

Создание современных ТСО практически обеспечит реализацию LVC-концепции подготовки войск, которая базируется на комплексном использовании трех видов моделирования: боевой реальности, виртуального и конструктивного моделирования. При этом каждый сегмент моделирования фактически определяет особенности построения ТСО и область его применения (рис. 4).

Так, моделирование боевой реальности (Live Simulator, L-сегмент) предполагает использование реальных военнослужащих и реальных систем при проведении тактических учений (ТУ) различных уровней. В процессе выполнения мероприятий боевой подготовки войска используют реальное вооружение в реальных условиях. Эффекты взаимодействия могут быть обозначены подыгрышем противоположной стороны с использованием мишеней при проведении боевых стрельб и полетов реальной авиации при проведении учебных стрельб. Данный вид моделирования характерен для полигонов ВКО.

Виртуальное моделирование (Virtual Simulator, V-сегмент) предполагает работу реальных людей с имитируемыми системами в информационно-моделирующей среде, то есть использование различных видов и типов тренажеров при проведении мероприятий боевой подготовки, направленных на одиночную подготовку обучаемых, обучение и слаживание боевых расчетов, расчетов КП (ПУ) различных уровней управления (см. рис. 3). Данный вид моделирования применим в местах постоянной дислокации при проведении различных видов тренировок.

Конструктивное моделирование (Constructive Simulator, C-сегмент) включает имитированный личный состав, технику, вооружение и воинские формирования. Реальные люди контролируют имитацию, в которой взаимодействуют смоделированные войска, техника и вооружение (рис. 5). Подобная система моделирования должна использоваться для проведения учебных мероприятий при подготовке органов управления (ОУ). Данный вид моделирования применим при проведении компьютерных командно-штабных тренировок (КШТ) и командно-штабных учений (КШУ) ОУ начиная с тактического звена.

Комплексное применение отмеченных видов моделирования предполагает возможность их объединения в тренажные системы внутривидового и межвидового применения. Предлагаемый вариант ТС межвидового применения ЗРВ (ВКО, ВВС, ПВО ВМФ, войск ПВО СВ) в условиях полигона представлен на рисунке 6, где воздушная (фоноцелевая) обстановка создается путем комплексирования полетов реальных и имитируемых целей. Сигналы от имитируемых целей поступают на вход радиоприемных средств ЗРВ и РТВ так же, как и сигналы от реальных целей, и создают общую обстановку. При этом реальная авиация отрабатывает способы преодоления ПВО и поражения объектов обороны посредством применения авиационных средств поражения. Необходимо отметить, что имитируемые цели могут быть также созданы на базе авиационных тренажеров с трехмерной визуализацией обстановки для пилотов. Особенности архитектуры полигона ВКО, реализующего LVC-концепцию подготовки войск, представлены на рисунке 7.

Необходимо учитывать, что интеграция тренажных средств (тренажеров, тренажерных комплексов и систем) в ЕИМС потребует решения ключевых проблем системного характера, а именно:

  • методических – разработка новых программ и методик обучения во взаимосвязи с созданием новых поколений ТСО и оснащение ими учебной материально-технической базы войск;
  • системотехнических – осуществление перехода к модульному принципу построения аппаратно-программных средств ТСО на качественно новой информационно-технологической базе;
  • технологических – создание отечественной технологической базы разработки средств обучения нового поколения внутривидового и межвидового применения.

Возможными направлениями решения отмеченных проблем следует считать:

  • использование перспективной элементной базы и современных аппаратно-программных средств при создании перспективных ТСО;
  • применение аппаратно-программных средств, построенных на основе сертифицированных программно-технических комплексов (ПТК), адаптированных к применению в составе тренажных систем для Войск ВКО;
  • максимально возможную унификацию аппаратно-программных средств, входящих в состав тренажных систем для Войск ВКО;
  • сопряжение аппаратно-программных средств, входящих в состав тренажных систем Войск ВКО, на основе высокоуровневых технологий комплексирования;
  • интеграцию ранее разработанных и разрабатываемых тренажеров (тренажерных комплексов) в единую информационно-моделирующую среду (ЕИМС) на основе технологии распределенного моделирования;
  • использование ЕИМС для всех средств, задействованных в проведении различных видов тренировок;
  • комплексирование различных сегментов моделирования (V-сегмент, C-сегмент) для проведения комплексных и многостепенных тренировок подразделений, частей и соединений и ОУ по единому замыслу и сценарию;
  • использование средств комплексной системы защиты информации в интересах обеспечения безопасности обработки, хранения и передачи информации.

По нашему мнению, реализация отмеченных направлений позволит образовать перспективную технологическую базу для создания тренажных систем внутривидового и межвидового применения и обеспечить:

  • увеличение доли обученных специалистов для Войск ВКО, несмотря на сокращение сроков общей продолжительности службы в Вооруженных силах;
  • интенсивную подготовку личного состава подразделений и соединений Войск ВКО на основе отработки вариантов обстановки любой сложности по замыслу руководителя обучения;
  • комплексную подготовку подразделений и органов управления воинских формирований Войск ВКО к выполнению боевых задач на более высоком методическом и техническом уровне;
  • достижение максимальной объективности контроля уровня подготовки военнослужащих, подразделений, соединений и органов управления;
  • совершенствование навыков командиров и должностных лиц органов управления в принятии решений и организации взаимодействия, решении других задач;
  • повышение морально-психологической устойчивости личного состава в условиях обстановки, близкой к реальной.

По нашим оценкам, реализация предлагаемой к применению в Войсках ВКО LVC-концепции подготовки войск и органов управления позволит обеспечить существенное снижение затрат (в 7–12 раз) на проведение слаживания межвидовых группировок сил и средств ПВО по отношению к обозначению воздушного противника с использованием реальных летных средств. Научный потенциал по дальнейшей разработке LVC-концепции имеет ВА ВКО им. Г. К. Жукова, а практический опыт по ее реализации при подготовке войск в перспективных центрах боевой подготовки – ОАО «НПО «Русские базовые информационные технологии», что позволяет сделать вывод о целесообразности совместного использования потенциалов данных заведений (предприятий) при проведении работ по созданию перспективных центров боевой подготовки (ЦБП) Войск ВКО.

Процесс создания математических моделей боевых действий трудоемок, длителен и требует использования труда специалистов достаточно высокого уровня, имеющих хорошую подготовку как в предметной области, связанной с объектом моделирования, так и в области прикладной математики, современных математических методов, программирования, знающих возможности и специфику современной вычислительной техники. Отличительной особенностью математических моделей боевых действий, создаваемых в настоящее время, является их комплексность, обусловленная сложностью моделируемых объектов. Необходимость построения таких моделей требует разработки системы правил и подходов, позволяющих снизить затраты на разработку модели и уменьшить вероятность появления трудноустранимых впоследствии ошибок. Важной составной частью такой системы правил являются правила, обеспечивающие корректный переход от концептуального к формализованному описанию системы на том или ином математическом языке, что достигается выбором определенной математической схемы. Под математической схемой понимается частная математическая модель преобразования сигналов и информации некоторого элемента системы, определяемая в рамках конкретного математического аппарата и ориентированная на построение моделирующего алгоритма данного класса элементов сложной системы .

В интересах обоснованного выбора математической схемы при построении модели целесообразно провести ее классификацию по цели моделирования, способу реализации, типу внутренней структуры, сложности объекта моделирования, способу представления времени.

Необходимо отметить, что выбор классификационных признаков определяется конкретными целями исследования. Целью классификации в данном случае является, с одной стороны, обоснованный выбор математической схемы описания процесса боевых действий и ее представление в модели в интересах получения достоверных результатов, а с другой - выявление особенностей моделируемого процесса, которые необходимо учитывать.

Цель моделирования - исследование динамики протекания процесса вооруженной борьбы и оценка показателей эффективности боевых действий. Под такими показателями понимается численная мера степени выполнения боевой задачи, которую количественно можно представить, например, относительной величиной предотвращаемого ущерба объектам обороны или наносимого противнику ущерба.

Способ реализации должен состоять в формализованном описании логики функционирования образцов вооружения и военной техники (ВВТ) в соответствии со своими аналогами в реально протекающем процессе. Необходимо учитывать, что современные образцы ВВТ - это сложные технические системы, решающие комплекс взаимосвязанных задач, которые тоже являются сложными техническими системами. При моделировании таких объектов целесообразно сохранить и отразить как естественный состав и структуру, так и алгоритмы боевого функционирования модели. Причем в зависимости от целей моделирования может потребоваться варьирование этими параметрами модели (составом, структурой, алгоритмами) для различных вариантов расчета. Данное требование определяет необходимость разрабатывать модель конкретного образца ВВТ как составную модель его подсистем, представляемых взаимосвязанными компонентами.

Таким образом, по классификационному признаку тип внутренней структуры модель должна быть составной и многокомпонентной, по способу реализации - обеспечивать имитационное моделирование боевых действий.

Сложность объекта моделирования. При разработке компонент, определяющих состав моделей образцов ВВТ, и объединении моделей образцов ВВТ в единую модель боевых действий необходимо учитывать отличающиеся на порядки характерные масштабы осреднения по времени величин, фигурирующих в компонентах.

Конечной целью моделирования является оценка показателей эффективности боевых действий. Именно для расчета этих показателей и разрабатывается модель, воспроизводящая процесс боевых действий, который условно назовем главным. Характерный временной масштаб всех остальных входящих в него процессов (первичной обработки радиолокационной информации, сопровождения целей, наведения ракет и др.) много меньше главного. Таким образом, все протекающие в вооруженной борьбе процессы целесообразно разделить на медленные, прогноз развития которых интересует, и быстрые, характеристики которых не интересуют, однако их влияние на медленные необходимо учитывать. В таких случаях характерный временной масштаб осреднения выбирается так, чтобы иметь возможность составить модель развития главных процессов. Что касается быстрых процессов, то в рамках создаваемой модели необходим алгоритм, позволяющий в моменты осуществления быстрых процессов учитывать их влияние на медленные.

Возможны два подхода к моделированию влияния быстрых процессов на медленные. Первый состоит в разработке модели их развития с соответствующим характерным временным масштабом осреднения, много меньшим, чем у главных процессов. При расчете развития быстрого процесса в соответствии с его моделью характеристики медленных процессов не меняются. Результатом расчета является изменение характеристик медленных процессов, с точки зрения медленного времени происходящее мгновенно. Для того чтобы иметь возможность реализовать этот способ расчета влияния быстрых процессов на медленные, необходимо вводить соответствующие внешние величины, идентифицировать и верифицировать их модели, что усложняет все этапы технологии моделирования.

Второй подход состоит в отказе от описания развития быстрых процессов с помощью моделей и рассмотрения их характеристик в качестве случайных величин. Для реализации этого способа необходимо иметь функции распределения случайных величин, которые характеризуют влияние быстрых процессов на медленные, а также алгоритм, определяющий моменты наступления быстрых процессов. Вместо расчета развития быстрых процессов производится выброс случайного числа и в зависимости от выпавшего значения в соответствии с известными функциями распределения случайных величин определяется значение, которое примут зависимые показатели медленных процессов, таким образом учитывается влияние быстрых процессов на медленные. В результате характеристики медленных процессов также становятся случайными величинами.

Необходимо отметить, что при первом способе моделирования влияния быстрых процессов на медленные быстрый процесс становится медленным, главным, и на его протекание влияют быстрые уже по отношению к нему процессы. Эта иерархическая вложенность быстрых процессов в медленные - одна из составляющих того качества моделирования процесса вооруженной борьбы, которое относит модель боевых действий к структурно-сложной.

Способ представления модельного времени. На практике используют три понятия времени: физическое, модельное и процессорное. Физическое время относится к моделируемому процессу, модельное - к воспроизведению физического времени в модели, процессорное - это время выполнения модели на компьютере. Соотношение физического и модельного времени задается коэффициентом K, определяющим диапазон физического времени, принимаемого за единицу модельного времени.

В силу дискретного характера взаимодействия образцов ВВТ и их представления в виде компьютерной модели модельное время целесообразно задавать путем приращения дискретных временных отрезков. При этом возможны два варианта его представления: 1) дискретное время есть последовательность равноудаленных друг от друга вещественных чисел; 2) последовательность временных точек определяется значимыми событиями, происходящими в моделируемых объектах (событийное время). С точки зрения вычислительных ресурсов второй вариант более рационален, поскольку позволяет активизировать объект и имитировать его работу только при наступлении некоторого события, а в промежутке между событиями предполагать, что состояние объектов остается неизменным.

Одной из основных задач при разработке модели является выполнение требования синхронизации всех моделируемых объектов по времени, то есть правильное отображение порядка и временных отношений между изменениями в процессе боевых действий на порядок выполнения событий в модели. При непрерывном представлении времени считается, что существуют единые для всех объектов часы, которые показывают единое время. Передача информации между объектами происходит мгновенно, и таким образом, сверяясь с едиными часами, можно установить временную последовательность всех происходивших событий. Если в модели существуют объекты с дискретным представлением времени, для формирования единых часов модели необходимо объединить множество временных отсчетов моделей объектов, упорядочить и доопределить значения сеточных функций на недостающих временных отсчетах. Синхронизировать модели объектов с событийным временем можно только явно, путем передачи сигнала о наступлении события. При этом необходима управляющая программа-планировщик организации выполнения событий различных объектов, которая и определяет требуемый хронологический порядок выполнения событий.

В модели боевых действий необходимо совместно использовать событийное и дискретное время, такое представление времени называют гибридным. При его использовании моделируемые объекты приобретают свойство изменять значения некоторых показателей состояния скачкообразно и практически мгновенно, то есть становятся объектами с гибридным поведением.

Подводя итог приведенной классификации, можно сделать вывод о том, что модель боевых действий должна представлять собой составную, структурно-сложную, многокомпонентную, динамическую, имитационную модель с гибридным поведением.

Для формализованного описания такой модели целесообразно использовать математическую схему на основе гибридных автоматов . В этом случае образцы ВВТ представляются многокомпонентными активными динамическими объектами. Компоненты описываются набором переменных состояния (внешние и внутренние), структурой (одноуровневой или иерархической) и поведением (карта поведения). Взаимодействие между компонентами осуществляется посредством посылки сообщений. Для объединения компонент в модель активного динамического объекта используются правила композиции гибридных автоматов.

Введем следующие обозначения:

sÎRn - вектор переменных состояния объекта, который определяется совокупностью входных воздействий на объект , воздействий внешней среды , внутренних (собственных) параметров объекта hkÎHk,;

Множество вектор-функций, определяющих закон функционирования объекта во времени (отражают его динамические свойства) и обеспечивающих существование и единственность решения s(t);

S0 - множество начальных условий, включающее все начальные условия компонент объекта, порождаемые функцией инициализации в процессе функционирования;

Предикат, определяющий смену поведения объекта (выделяет из всех специально отобранных состояний нужное, проверяет условия, которые должны сопутствовать наступившему событию, и принимает при их выполнении значение истина), задается множеством булевских функций;

Инвариант, определяющий некое свойство объекта, которое должно сохраняться на заданных промежутках времени, задается множеством булевских функций;

- множество вещественных функций инициализации, ставящих в соответствие значению решения в правой конечной точке текущего промежутка времени значение начальных условий в левой начальной точке на новом временном промежутке :s()=init(s());

Гибридное время, задается последовательностью временных отрезков вида , - замкнутые интервалы.

Элементы гибридного времени Pre_gapi, Post_gapi являются «временной щелью» очередного такта гибридного времени tH={t1, t2,…}. На каждом такте на отрезках локального непрерывного времени гибридная система ведет себя как классическая динамическая система до точки t*, в которой становится истинным предикат, определяющий смену поведения. Точка t* является конечной точкой текущего и началом следующего интервала. В интервале расположены две временные щели, в которых могут изменяться переменные состояния. Течение гибридного времени в очередном такте ti=(Pre_gapi,, Post_gapi) начинается с вычисления новых начальных условий во временной щели Pre_gapi. После вычисления начальных условий проводится проверка предиката на левом конце нового промежутка времени. Если предикат принимает значение истина, оcуществля-ется переход сразу во вторую временную щель, в противном случае выполняется дискретная после-довательность действий, соответствующих текущему такту времени. Временная щель Post_gapi предназначена для выполнения мгновенных дейст-вий после завершения длительного поведения на данном такте гибридного времени.

Под гибридной системой H понимается математический объект вида

.

Задача моделирования заключается в нахождении последовательности решений Ht={(s0(t),t, t0), (s1(t),t,t1),…}, определяющих траекторию гибридной системы в фазовом пространстве состояний. Для нахождения последовательности решений Ht необходимо проводить эксперимент или имитацию на модели при заданных исходных данных. Другими словами, в отличие от аналитических моделей, с помощью которых получают решение известными математическими методами, в данном случае необходим прогон имитационной модели, а не решение. Это означает, что имитационные модели не формируют свое решение в том виде, в каком это имеет место при использовании аналитических моделей, а являются средством и источником информации для анализа поведения реальных систем в конкретных условиях и принятия решений относительно их эффективности.

В 2 ЦНИИ МО РФ (г. Тверь) на основе представления моделируемых объектов в виде гибридных автоматов разработан имитационный моделирующий комплекс (ИМК) «Селигер», предназначенный для оценки эффективности группировок сил и средств воздушно-космической обороны при отражении ударов средств воздушно-космическо-го нападения (СВКН). Основу комплекса составляет система имитационных моделей объектов, имитирующая алгоритмы боевого функционирования реальных образцов ВВТ (зенитно-ракетный комплекс, радиолокационная станция, комплекс средств автоматизации командного пункта (для радиотехнических войск - радиолокационной роты, батальона, бригады, для зенитно-ракетных войск - полка, бригады и др.), боевой авиационный комплекс (истребительной авиации и средств воздушно-космического нападения), средства радиоэлектронного подавления, огневые комплексы нестратегической противоракетной обороны и др.). Модели объектов представлены в виде активных динамических объектов (АДО), в состав которых входят компоненты, позволяющие исследовать в динамике различные процессы при их функционировании.

Например, радиолокационная станция (РЛС) представлена следующими компонентами (рис. 1): антенная система (АС), радиопередающее устройство (РПрдУ), радиоприемное устройство (РПрУ), подсистема защиты от пассивных и активных помех (ПЗПАП), блок первичной обработки информации (ПОИ), блок вторичной обработки информации (ВОИ), аппаратура передачи данных (АПД) и др.

Композиция данных компонент в составе модели РЛС позволяет адекватно моделировать процессы приема-передачи сигналов, обнаружения эхосигналов и пеленга, алгоритмы помехозащиты, измерения параметров сигнала и др. В результате моделирования рассчитываются основные показатели, характеризующие качество РЛС как источника радиолокационной информации (параметры зоны обнаружения, точностные характеристики, разрешающая способность, производительность, помехозащищенность и т.п.), что позволяет оценить эффективность ее работы при различных условиях помехоцелевой обстановки.

Синхронизация всех моделируемых объектов по времени, то есть правильное отображение порядка и временных отношений между изменениями в процессе боевых действий на порядок выполнения событий в модели, осуществляется программой управления объектами (рис. 2). В функции данной программы также входят создание и удаление объектов, организация взаимодействия между объектами, протоколирование всех событий, происходящих в модели.

Использование протокола событий позволяет проводить ретроспективный анализ динамики боевых действий любым моделируемым объектом. Это дает возможность оценить степень адекватности моделей объектов как с использованием методов предельных точек, так и посредством контроля корректности моделирования процессов в компонентах объекта (то есть проверка адекватности методом прогона от входа к выходу ), что повышает достоверность и обоснованность получаемых результатов.

Необходимо отметить, что многокомпонентный подход позволяет варьировать их составом (например, исследовать боевую работу ЗРК с различным типом АСЦУ) в интересах синтеза структуры, удовлетворяющей определенным требованиям. Причем за счет типизации программного представления компонент, без перепрограммирования исходного кода программы.

Общим преимуществом данного подхода при построении модели является возможность оперативного решения ряда исследовательских задач: оценка влияния изменения состава и структуры системы управления (количество уровней, цикл управления и др.) на эффективность боевых действий группировки в целом; оценка влияния различных вариантов информационного обеспечения на потенциальные боевые возможности образцов и группировки в целом, исследование форм и способов боевого применения образцов и др.

Построенная на основе гибридных автоматов модель боевых действий представляет собой суперпозицию совместного поведения параллельно и/или последовательно функционирующих и взаимодействующих многокомпонентных АДО, являющихся композицией гибридных автоматов, функционирующих в гибридном времени и взаимодействующих через связи на основе сообщений.

Литература

1. Сирота А.А. Компьютерное моделирование и оценка эффективности сложных систем. М.: Техносфера, 2006.

2. Колесов Ю.Б., Сениченков Ю.Б. Моделирование систем. Динамические и гибридные системы. СПб: БХВ-Петербург, 2006.