Аэродинамические характеристики лопастей тангенциального вентилятора. Ушаков, Константин Андреевич - Аэродинамика осевых вентиляторов и элементы их конструкций. Пример характеристики вентилятора при комплектации электродвигателем

Аэродинамические характеристики вентиляторов показывают расход вентиляторов в зависимости от давления. Определенное давление соответствует определенному расходу воздуха, который проиллюстрирован кривой вентилятора.


Рисунок 28. Аэродинамические характеристики вентилятора и сети

Характеристики сети

Сопротивление вентиляционной системы при различных расходах отображаются на графике характеристики сети. Рабочая точка вентилятора это точка пересечения характеристики сети и кривой вентилятора. Она показывает характеристики потока для данной сети воздуховодов.

Каждое изменение давления в вентиляционной системе дает начало новой характеристике сети. Если давление возрастает, характеристика сети будет аналогична линии В. При снижении давления, линия системы будет аналогична линии С. (При условии, что количество оборотов рабочего колеса остается неизменным).


Рисунок 29. Изменение давления дает начало новым кривым сети

Если реальное сопротивление сети представленно кривой В, рабочая точка сдвигается с 1 на 2. Это также влечет за собой уменьшение расхода воздуха. Таким же образом расход воздуха возрастет, если сопротивление сети соответствует линии С.



Рисунок 30. Увеличение или уменьшение скорости вращения вентилятора

Для получения расхода воздуха, аналогичного расчетному, можно в первом случае (где характеристика сети соответствует В) просто увеличить скорость вентилятора. Рабочая точка (4) будет находиться в этом случае на пересечении характеристики сети В и кривой вентилятора для более высокой скорости вращения. Точно также скорость вращения вентилятора может быть уменьшена, если реальная характеристика сети соответствует линии С.



Рисунок 31. Разница в давлении при различных скоростях вращения

В обоих случаях будет наблюдаться некоторое отличие в показателях давления от характеристики сети, для которых были проведены расчеты, и это показано как ΔР1 и ΔР2 на рисунке, соответственно. Это означает, что рабочая точка для расчетной сети была выбрана таким образом, чтобы выйти на максимальный уровень эффективности, и каждое такое повышение и понижение скорости вращения вентилятора ведет к сокращению эффективности.

Эффективность и характеристики сети

Для того чтобы облегчить выбор вентилятора, можно построить несколько возможных характеристик сети на графике вентиляторов, а затем посмотреть, между какими характеристиками работает определенный тип вентилятора. Если пронумеровать характеристики сети от 0 до 10, вентилятор будет свободно дуть (максимальный расход воздуха) на линии 10, и захлебнется (нулевой расход) на линии 0. Это означает, что вентилятор на линии системы 4 производит 40% от свободного расхода.



Рисунок 32. Характеристики сети (0-10) на графике вентилятора

Эффективность вентилятора вдоль всей характеристики сети остается постоянной.

Вентиляторы с загнутыми назад лопатками часто имеют более высокую эффективность, чем вентиляторы с загнутыми вперед лопатками. Но более высокий уровень эффективности этих вентиляторов достижим лишь на ограниченном участке, где характеристика сети представленна меньшим расходом при заданном давлении, чем у вентиляторов с загнутыми вперед лопатками.

Чтобы получить расход аналогичный тому, что у вентиляторов с загнутыми вперед лопатками, и сохранить при этом высокий уровень эффективности, нужно выбрать вентилятор с загнутыми назад лопатками большего размера.



Рисунок 33. Значения эффективности для аналогичных размеров центробежных вентиляторов с лопатками, загнутыми назад и загнутыми вперед, соответственно

Вентиляторы общего назначения применяют для работы на чистом воздухе, температура которого меньше 80 градусов. Для перемещения более горячего воздуха предназначены специальные термостойкие вентиляторы. Для работы в агрессивных и взрывоопасных средах выпускают специальные антикоррозионные и взрывобезопасные вентиляторы. Кожух и детали антикоррозионного вентилятора выполнены из материалов, не вступающих в химическую реакцию с коррозионными веществами перемещаемого газа. Взрывобезопасное исполнение исключает вероятность искрообразования внутри корпуса (кожуха) вентилятора и повышенного нагревания его частей во время работы. Для перемещения запылённого воздуха применяют специальные пылевые вентиляторы. Размеры вентиляторов характеризуются номером, который обозначает диаметр рабочего колеса вентилятора, выраженный в дециметрах.

По принципу действия вентиляторы подразделяются на центробежные (радиальные) и осевые. Центробежные вентиляторы низкого давления создают полное давление до 1000 Па; вентиляторы среднего давления - до 3000 Па; и вентиляторы высокого давления развивают давление от 3000 Па до 15000 Па.

Центробежные вентиляторы изготавливают с дисковым и бездисковым рабочим колесом:

Лопатки рабочего колеса крепятся между двумя дисками. Передний диск - в виде кольца, задний - сплошной. Лопасти-лопатки бездискового колеса крепятся к ступице. Спиральный кожух центробежного вентилятора устанавливают на самостоятельных опорах, или на станине, общей с электродвигателем.

Осевые вентиляторы характеризуются большой производительностью, но низким давлением, поэтому широко применяются в общеобменной вентиляции для перемещения больших объёмов воздуха при невысоком давлении. Если рабочее колесо осевого вентилятора состоит из симметричных лопаток, то вентилятор является реверсивным.

Схема осевого вентилятора:

Крышные вентиляторы изготавливаются осевые и радиальные; устанавливаются на крышах, на бесчердачном перекрытии зданий. Рабочее колесо и осевого, и радиального крышного вентилятора вращается в горизонтальной плоскости. Схемы работы осевого и радиального (центробежного) крышных вентиляторо в:

Осевые крышные вентиляторы применяют для общеобменной вытяжной вентиляции без сети воздуховодов. Радиальные крышные вентиляторы развивают более высокие давления, поэтому могут работать как без сети, так и с сетью подключенных к ним воздуховодов.

Подбор вентилятора по аэродинамическим характеристикам.

Для каждой вентиляционной системы, аспирационной или пневмотранспортной установки вентилятор подбирают индивидуально, используя графики аэродинамических характеристик нескольких вентиляторов. По давлению и расходу воздуха на каждом графике находят рабочую точку, которая определяет коэффициент полезного действия и частоту вращения рабочего колеса вентилятора. Сравнивая положение рабочей точки на разных характеристиках, выбирают тот вентилятор, который даёт наибольший кпд при заданных значениях давления и расхода воздуха.

Пример. Расчёт вентиляционной установки показал общие потери давления в системе Нс=2000 Па при требуемом расходе воздуха Q с=6000 м³/час. Подобрать вентилятор, способный преодолеть это сопротивление сети и обеспечить необходимую производительность.

Для подбора вентилятора его расчётное давление принимается с коэффициентом запаса k =1,1:

Нв= kHc ; Нв=1,1·2000=2200 (Па).

Расход воздуха рассчитан с учётом всех непродуктивных подсосов. Q в= Q с=6000 (м³/час). Рассмотрим аэродинамические характеристики двух близких номеров вентиляторов, в диапазон рабочих значений которых попадают значения расчётного давления и расхода воздуха проектируемой вентиляционной установки:

Аэродинамическая характеристика вентилятора 1 и вентилятора 2.

На пересечении величин Р v =2200 Па и Q =6000 м³/час указываем рабочую точку. Наибольший коэффициент полезного действия определяется на характеристике вентилятора 2: кпд=0,54; частота вращения рабочего колеса n =2280 об/мин; окружная скорость края колеса u ~42 м/сек.

Окружная скорость рабочего колеса 1-го вентилятора (u ~38 м/сек) значительно меньше, значит, будут меньше создаваемые этим вентилятором шум и вибрация, выше эксплуатационная надёжность установки. Иногда предпочтение отдаётся более тихоходному вентилятору. Но рабочий коэффициент полезного действия вентилятора должен быть не ниже 0,9 его максимального кпд. Сравним ещё две аэродинамические характеристики, которые подходят для выбора вентилятора к той же вентиляционной установке:

Аэродинамические характеристики вентилятора 3 и вентилятора 4.

Коэффициент полезного действия вентилятора 4 близок к максимальному (0,59). Частота вращения его рабочего колеса n =2250 об/мин. Кпд 3-его вентилятора несколько ниже (0,575), но и частота вращения рабочего колеса существенно меньше: n =1700 об/мин. При небольшой разнице коэффициентов полезного действия 3-й вентилятор предпочтительнее. Если расчёт мощности привода и электродвигателя покажет близкие результаты для обоих вентиляторов, следует выбрать вентилятор 3.

Расчёт мощности, требуемой для привода вентилятора.

Мощность, которая требуется для привода вентилятора, зависит от создаваемого им давления H в (Па), перемещаемого объёма воздуха Q в (м³/сек) и коэффициента полезного действия кпд:

N в= H в ·Q в/1000·кпд (кВт); Нв=2200 Па; Q в=6000/3600=1,67 м³/сек.

Коэффициенты полезного действия предварительно подобранных по аэродинамическим характеристикам вентиляторов 1, 2, 3 и 4 соответственно: 0,49; 0,54; 0,575; 0,59.

Подставляя величину давления, расхода и кпд в формулу расчёта, получим следующие значения мощности для привода каждого вентилятора: 7,48 кВт, 6,8 кВт, 6,37 кВт, 6,22 кВт.

Расчёт мощности электродвигателя для привода вентилятора.

Мощность электродвигателя зависит от вида её передачи с вала двигателя на вал вентилятора, и учитывается в расчёте соответствующим коэффициентом (k пер). Нет потерь мощности при непосредственной посадке рабочего колеса вентилятора на вал электродвигателя, т. е. кпд такой передачи равен 1. Кпд соединения валов вентилятора и электродвигателя с помощью муфты 0,98. Для достижения необходимой частоты вращения рабочего колеса вентилятора применяем клиноремённую передачу, коэффициент полезного действия которой 0,95. Потери в подшипниках учитываются коэффициентом k п=0,98. По формуле расчёта мощности электродвигателя:

N эл= N в / k пер· k п

получим следующие мощности: 8,0 кВт; 7,3 кВт; 6,8 кВт; 6,7 кВт.

Установочную мощность электродвигателя принимают с коэффициентом запаса k з=1,15 для двигателей мощностью менее 5 кВт; для двигателей более 5 кВт k з=1,1:

N у= k з· N эл.

С учётом коэффициента запаса k з=1,1 окончательная мощность электродвигателей для 1-го и 2-го вентиляторов составит 8,8 кВт и 8 кВт; для 3-го и 4-го 7,5 кВт и 7,4 кВт. Первые два вентилятора пришлось бы комплектовать двигателем 11 кВт, для любого вентилятора из второй пары достаточно мощности электродвигателя 7,5 кВт. Выбираем вентилятор 3: как менее энергоёмкий, чем типоразмеры 1 или 2; и как более тихоходный и эксплуатационнонадёжный по сравнению с вентилятором 4.

Номера вентиляторов и графики аэродинамических характеристик в примере подбора вентилятора приняты условно, и не относятся к какой-либо конкретной марке и типоразмеру. (А могли бы.)

Расчёт диаметров шкивов клиноремённого привода вентилятора.

Клиноремённая передача позволяет подобрать нужную частоту вращения рабочего колеса посредством установки на вал двигателя и приводной вал вентилятора шкивов разного диаметра. Определяется передаточное отношение частоты вращения вала электродвигателя к частоте вращения рабочего колеса вентилятора: n э / n в .

Шкивы клиноремённой передачи подбираются так, чтобы отношение диаметра приводного шкива вентилятора к диаметру шкива на валу электродвигателя соответствовало отношению частот вращения:

D в / D э = n э / n в

Отношение диаметра ведомого шкива к диаметру ведущего шкива называется передаточным числом ремённой передачи.

Пример. Подобрать шкивы для клиноремённой передачи вентилятора с частотой вращения рабочего колеса 1780 об/мин, с приводом от электродвигателя мощностью 7,5 кВт и частотой вращения 1440 об/мин. Передаточное отношение передачи:

n э / n в =1440/1780=0,8

Необходимую частоту вращения рабочего колеса обеспечит следующая комплектация: шкив на вентиляторе диаметром 180 мм , шкив на электродвигателе диаметром 224 мм .

Схемы клиноремённой передачи вентилятора, повышающей и понижающей частоту вращения рабочего колеса:

Рис 7.24. Установка осевого вентилятора ЦАГИ типа У.

Рис. 7.23. Крышный осевой вентилятор.

1-предохранительная решетка; 2- коллектор; 3- корпус; 4- электродвигатель; 5- рабочее колесо; 6- диффузор; 7- клапан; 8- зонт.

В настоящее время начат выпуск этого вентилятора в крышей модификации (рис 7.23). Колесо вентилятора при этом вращается в горизонтальной плоскости, будучи установлено на валу вертикально расположенного электродвигателя, укрепленного на трех растяжках в обечайке (корпусе).

Вся установка размещается в коротком трубопроводе, снабжен ном предохранительной решеткой со стороны входа воздуха и зонтом на выходе.

Агрегаты выпускаются свенти-пяторами № 4, 5, 6, 8, 10 и 12. По данным каталога, предельные окружные скорости составляют 45м/сек. Максимальное развивае­мое статическое давление дости­гает 10-11 кГ/м 2 при статиче­ском к. п. д. 0,31.

Осевые вентиляторы ЦАГИ типа У (универсальные) имеют более сложную конструкцию. Колесо вентилятора состоит из втулки большого диаметра (0,5 D), на которой укреплены 6 или 12 полых лопаток. Каждая лопатка приклепана к стержню, кото­рый в свою очередь ввернут в специальный стакан и закрепляется гайками во втулке. Лопатки поворотные и могут устанавливаться под углом от 10 до 25° к плоскости вращения колеса (рис. 7.24). Установка лопаток под необходимым углом проводится по разметке, сделанной на боковой поверхности втулки.

Возможность менять углы установки лопаток, т. е. менять геометрию колеса, придает этому вентилятору универсальность, так как развиваемое им давление увеличивается с увеличением угла установки лопаток.

Вентилятор рассчитан на привод от электродвигателя посредством клиноременной передачи, поэтому колесо вентилятора установлено на валу. Вал имеет два подшипника, корпуса которых размещаются в коробчатых держателях. Каждый из держателей имеет четыре литых стержня, оканчивающихся плоскими лапами с отверстиями под установочные болты. Держатели со стержнями и лапами образуют две рамы, на которых удерживается колесо. Шкив для привода расположен консольно на конце вала. В настоящее время (в основном для нужд текстильной промышлен­ности) выпускаются вентиляторы с 12 лопатками № 12, 16 и 20. Колесо этих машин весьма прочно и допускает окружные ско­рости до 80-85 м/сек..

Учитывая, что давление, развиваемое вентилятором типа У, зависит от угла установки лопаток, характерно вентилятора следовало бы строить для каждого угла отдельно. Поэтому для вентиляторов типа У приводится особая универсальная характеристика, охватывающая области работы вентиляторов в различных условиях.

Производительность вентиляторов указанных трех размеров лежит в пределах от 1-6000 до 100000 ,м 3 /ч. Развиваемые давления колеблются от 11 кГ/м 2 (при лопатках, установленных под углом 10°) до 35-40 кГ/м 2 (при установке лопаток под углом.


Электродвигатель, приводящий во вращение колесо вентилятора, располагают обычно на полу у стены помещения, в отверстии которой монтируют вентилятор.

Максимальный к. п. д. вентилятора (при углах установки лопаток 20°) достигает 0,62. При меньших и больших углах уста­новки к. п. д. несколько снижается (до 0,5 при 10° и до 0,58 при 25°).

Под аэродинамической схемой вентилятора подразумевается, совокупность основных конструктивных элементов, расположенных в определенной последовательности и характеризующих проточную часть машины, через которую проходит воздух. В вентиляторе ВОД11П реализована аэродинамическая схема, представленная на рис.7.25 (РК1 + НА + РК2 + СА), т.е. воздух всасывается в вентилятор из канала 5 через коллектор 6 под действием аэродинамических сил, возникающих при вращении лопаток 8 рабочего колеса РК 1 .


Рис.7.25 Аэродинамическая схема вентилятора ВОД11П

При выходе из колеса закрученный поток воздуха попадает на лопасти 9 направляющего аппарата НА1, который раскручивает его и направляет на лопатки 10 рабочего колеса РК2 второй ступени. При этом в НА осуществляется небольшая подкрутка потока перед входом в РК2 в направлении обратном вращению ротора, что способствует повышению тяги на втором колеся. После РК2 поток попадает в спрямляющий аппарат СА. С помощью лопастей 11 СА раскручивает поток и направляет его в диффузор, выполненный в виде расширяющегося конуса 14 и обечайки 13. В диффузоре по ходу потока увеличивается площадь живого сечения, следовательно скоростной напор снижается, а давление возрастает. При этом статический напор также возрастает.

Рабочие колеса РК1 и РК2 жестко закреплены на валу 4, установленном в подшипниках 3 и 12 и получающим вращение от двигателя 1 через муфту 2. Обтекатель 7 служит для выравнивания потока воздуха, втягиваемого в вентилятор.

На рис.7.26. представлен в разрезе вентилятор ВОД11П, который предназначен для проветривания горных выработок добычных участков и отдельных камер, а также используется при проходке стволов шахт, в калориферных установках, на крупных предприятиях и т.п.

Вентилятор состоит из ротора – вала 2 с двумя рабочими колесами 4 и 10, закрепленных жестко на валу с помощью шпонок 3 и стопорных колец. Рабочие колеса первой ступени РК1 и второй ступени РК2 имеют идентичную конструкцию, состоят из втулок 4 на которых размещено 12 лопаток из полимерного материала. Лопатки 8 и 11 устанавливаются в специальные гнезда крепятся с помощью распорных пружинных колец 6 и прижимаются пружинами 5 к втулке колеса. Такое крепление лопаток позволяет поворачивать их вручную через специальные окна в корпусе при остановленном вентиляторе в пределах углов установки 15 – 45 0 для регулирования подачи и давления. Корпус вентилятора состоит из двух разъемных частей верхней 7 и нижней 15, выполненных из стального литья в виде разрезного цилиндра.

Вентиляторы – устройства, предназначенные для создания воздушного (в общем случае, газового) потока. Основная задача, которую решают с применением этих устройств в оборудовании для вентиляции, кондиционирования и воздухоподготовки – создание в системе воздуховодов условий для перемещения воздушных масс от точек забора до точек выброса или потребителей.

Для эффективной работы оборудования воздушный поток, создаваемый вентилятором должен преодолеть сопротивление системы воздуховодов, обусловленное поворотами магистралей, изменением их сечения, появлением турбулентностей и прочими факторами.

В результате имеет место перепад давления, который является одним из важнейших характеристических показателей, влияющих на выбор вентилятора (кроме него основную роль играют производительность, мощность, уровень шума и т.д.). Зависят эти характеристики, прежде всего, от конструкции устройств и используемых принципов работы.

Все множество конструкций вентиляторов разделяют на несколько основных типов:

  • Радиальные (центробежные);
  • Осевые (аксиальные);
  • Диаметральные (тангенциальные);
  • Диагональные;
  • Компактные (кулеры)


Центробежные (радиальные) вентиляторы

В устройствах этого типа происходит всасывание воздуха по оси рабочего колеса и выброс его под действием центробежных сил, развиваемых в зоне его лопастей, в радиальном направлении. Использование центробежных сил позволят использовать такие устройства в случаях, когда требуется высокое давление.

Характеристики радиальных вентиляторов в значительной мере зависят от конструкции рабочего колеса и формы лопастей (лопаток).

По этому признаку крыльчатки радиальных вентиляторов разделяют на устройства с лопатками:

  • загнутыми назад;
  • прямыми, в том числе, отклоненными;
  • загнутыми вперед.
На рисунке упрощенно показаны типы крыльчаток (рабочее направление вращения колес обозначено стрелками).

Рабочие колеса с загнутыми назад лопастями

Для такой крыльчатки (B на рисунке) характерна значительная зависимость производительности от давления. Соответственно, радиальные вентиляторы такого типа оказываются эффективны при работе на восходящей (левой) ветви характеристики. При их использовании в таком режиме достигается уровень эффективности до 80%. При этом геометрия лопаток позволяет добиться низкого уровня рабочего шума.

Основной недостаток таких устройств – налипание находящихся в воздухе частиц на поверхности лопастей. Поэтому такие вентиляторы не рекомендуется применять для загрязненных сред.

Рабочие колеса с прямыми лопатками

В таких крыльчатках (форма R на рисунке) устранена опасность загрязнения поверхности содержащимися в воздухе примесями. Такие устройства демонстрируют эффективность до 55% . При использовании прямых отклоненных назад лопастей характеристики приближаются к показателям устройств с загнутыми назад лопатками (достигается эффективность до 70%).

Крыльчатки с загнутыми вперед лопастями

Для вентиляторов, использующих такую конструкцию (F на рисунке) влияние изменения давления на воздушный поток незначительно.

В отличие от крыльчаток с загнутыми назад лопастями наибольшая эффективность таких рабочих колес достигается при работе на правой (нисходящей) ветви характеристики, при этом ее уровень составляет до 60%. Соответственно, при прочих равных, вентилятор с крыльчаткой типа F выигрывает у устройств, снабженных крыльчаткой, по размерам рабочего колеса и общим габаритным показателям.


Осевые (аксиальные) вентиляторы

Для таких устройств и входной и выходной воздушный потоки направлены параллельно оси вращения крыльчатки вентилятора.

Главным недостатком таких устройств является низкая эффективность при использовании варианта установки со свободным вращением.

Значительное повышение эффективности достигается при заключении вентилятора в цилиндрический корпус. Существуют и другие методы улучшения характеристик, например, размещение непосредственно за рабочим колесом направляющих лопастей. Такие меры позволяют добиться эффективности аксиальных вентиляторов в 75% без использования направляющих лопастей и даже 85% при их установке.


Диагональные вентиляторы

При осевом воздушном потоке невозможно создать значительный уровень эквивалентного давления. Добиться увеличения статического давления позволяет использование для создания воздушного потока дополнительных сил, например, центробежных, которые действуют в радиальных вентиляторах.

Диагональные вентиляторы являются своеобразным гибридом аксиальных и радиальных устройств. В них всасывание воздуха осуществляется в направлении, совпадающем с осью вращения. За счет конструкции и расположения лопастей рабочего колеса достигается отклонение воздушного потока на 45 градусов.

Таким образом, в движении воздушных масс появляется радиальная составляющая скорости. Это позволяет добиться увеличения давления за счет действия центробежных сил. Эффективность диагональных устройств может составлять до 80%.


Диаметральные вентиляторы

В устройствах этого типа поток воздуха всегда направлен по касательной к рабочему колесу.

Это позволяет добиться значительной производительности даже при малых диаметрах крыльчатки. Благодаря таким особенностям диаметральные устройства получили распространение в компактных установках, таких как воздушные завесы.

Эффективность вентиляторов, использующих этот принцип действия, достигает уровня в 65%.


Аэродинамическая характеристика вентилятора

Аэродинамическая характеристика отражает зависимость расхода (производительности) вентилятора от давления.

На ней находится рабочая точка, показывающая актуальный расход при определенном уровне давления в систем.


Характеристика сети

Сеть воздуховодов при различных значениях расхода оказывает различное сопротивление движению воздуха. Именно это сопротивление определяет давление в системе. Отображается эта зависимость характеристикой сети.

При построении аэродинамической характеристики вентилятора и характеристики сети в единой систем координат рабочая точка вентилятора находится на их пересечении.


Расчет характеристики сети

Для построения характеристик сети используется зависимость

В этой формуле:

  • dP – давление вентилятора, Па;
  • q – расход воздуха, куб.м/ч или л/мин;
  • k – постоянный коэффициент.
Характеристика сети строится следующим образом.
  1. На аэродинамическую характеристику наносится первая точка, соответствующая рабочей точке вентилятора. К примеру, работает при давлении 250 Па, создавая воздушный поток 5000 куб.м/ч. (точка 1 на рисунке).
  2. По формуле определяется коэффициент kk = dP/q2Для рассматриваемого примера его величина составит 0.00001.
  3. Произвольно выбираются несколько отклонений давления, для которых пересчитывается расход.К примеру, при отклонения давления -100 Па (результирующая величина 150 Па) и +100 Па (значение 350 Па), рассчитанный по формуле расход воздуха составит 3162 и 516 куб.м/ч соответственно.
Полученные точки наносятся на график (2 и 3 на рисунке) и соединяются плавной кривой.

Каждому значению сопротивления сети воздуховодов соответствует собственная характеристика сети. Строятся они аналогичным образом.

В результате, при сохранении скорости вращения вентилятора, рабочая точка смещается по аэродинамической характеристике. При увеличении сопротивления рабочая точка из положения 1 смещается в положение 2, что вызывает снижение расхода воздуха. Наоборот, при уменьшении сопротивления (переход в точку 3 а линии С) расход воздуха увеличится.

Таким образом, отклонение реального сопротивления системы воздуховодов от расчетного приводит к несоответствию величины воздушного потока проектным значениям, что может отрицательно сказаться на эксплуатационных показателях системы в целом. Главная опасность такого отклонения заключается в невозможности для вентиляционных систем эффективно выполнять возложенные на них задачи.

Компенсировать отклонение расхода воздуха от расчетного можно за счет изменения скорости вращения вентилятора. При этом получается новая рабочая точка, лежащая на пересечении характеристики сети и той аэродинамической характеристики из семейства, которая соответствует новой скорости вращения.

Соответственно, при повышении или уменьшении сопротивления потребуется отрегулировать скорость вращения таким образом, чтобы рабочая точка переместилась в положение 4 или 5 соответственно.

В этом случае наблюдается отклонение давления от расчетной характеристики сети (величина изменений отображена на рисунке).

На практике появления таких отклонений говорит о том, что режим работы вентилятора отличается от того, который был рассчитан из соображений максимальной эффективности. Т.е. регулирование скорости как в сторону увеличения, так и в сторону снижения ведет к потере эффективности работы вентилятора и системы в целом.


Зависимость эффективности вентиляторов от характеристик сети

Для упрощения выбора вентилятора на его аэродинамических характеристиках строят несколько характеристик сети. Чаще всего используются 10 линий, номера которых удовлетворяют условию

L = (dPd / dP)1/2

  • L – номер характеристики сети;
  • dPd – динамическое давление, Па;
  • dP – величина общего давления.
На практике это означает, что в рабочей точке на каждой из построенных линий воздушный поток вентилятора составляет соответствующую величину от максимальной. Для линии 5 – это 50%, для линии 10 – 100% (вентилятор свободно дует).

При этом эффективность вентилятора, которая определяется соотношением

  • dP – общее давление, Па;
  • q – расход воздуха, куб.м/ч;
  • P – мощность, Вт
может оставаться неизменной.

В этом отношении интерес представляет сравнение эффективности радиальных вентиляторов с загнутыми назад и вперед лопастями рабочего колеса. Для первых максимальное значение этого показателя нередко оказывается выше, чем для вторых. Однако, такое соотношение сохраняется только при работе в области характеристик сети, соответствующим меньшему расходу при заданном значении давления.

Как видно из рисунка, при высоких уровнях расхода воздуха для получения равной эффективности вентиляторам с загнутыми назад лопатками потребуются больший диаметр рабочего колеса.


Аэродинамические потери в сети и правила монтажа вентиляторов

Технические характеристики вентиляторов соответствуют указанным производителем в технической документации в том случае, если выполняются требования по их установке.

Основным из них является монтаж вентилятора на прямом участке воздуховода, причем его длина должна составлять не менее одного и трех диаметров вентилятора со стороны всасывания и нагнетания соответственно.

Нарушение этого правила ведет к увеличению динамических потерь, и, как следствие, к росту перепада давления. При увеличении такого перепада расход воздуха может значительно уменьшится, по сравнению с расчетными значениями.

На уровень динамических потерь, производительность и эффективность влияет множество факторов. Соответственно, при установке вентиляторов необходимо выполнять и другие требования.

Со стороны всасывания:

  • вентилятор устанавливают на расстоянии не менее 0.75 диаметра до ближайшей стены;
  • сечение входного воздуховода не должно отличаться от диаметра входного отверстия более чем на +12 и -8%;
  • длина воздуховода со стороны забора воздуха должна быть больше 1.0 диаметра вентилятора;
  • наличие препятствий для прохождения воздушного потока (демпферов, ответвлений и др.) недопустимо.
Со стороны нагнетания:
  • изменение поперечного сечения воздуховода не должно превышать 15% и 7% в сторону уменьшения и увеличения соответственно;
  • длина прямолинейного участка трубопровода на выходе должна составлять не менее 3-х диаметров вентилятора;
  • для уменьшения сопротивления не рекомендуется использовать отводы под углом 90 градусов (при необходимости поворота магистрали их следует получить из двух отводов по 45 градусов).


Требования к удельной мощности вентиляторов

Высокие показатели энергоэффективности – одно из главных требований, которое применяется в европейских странах ко всему оборудованию, в том числе, и к системам вентиляции зданий. В соответствии с этим Шведским институтом внутреннего климата (Svenska Inneklimatinsitutet) была разработана концепция интегральной оценки эффективности для вентиляционного оборудования, основанная на так называемой удельной мощности вентиляторов.

Под этим показателем понимается отношение общей энергоэффективности всех входящих в систему вентиляторов к суммарному воздушному потоку в вентиляционных каналах здания. Чем ниже полученное в результате значение, тем эффективность оборудования выше.

Такая оценка легла в основу рекомендаций по покупке и установке вентиляционных систем для различных секторов и отраслей. Так для коммунальных зданий рекомендованное значение не должно превышать 1.5 при установке новых систем и 2.0 для оборудования после ремонта.